
Verilator-3.805

Wilson Snyder
http://www.veripool.org

2010-07-10

1

Verilator-3.805 CONTENTS

Contents

1 NAME 2

2 SYNOPSIS 2

3 DESCRIPTION 2

4 ARGUMENT SUMMARY 2

5 ARGUMENTS 4

6 EXAMPLE C++ EXECUTION 13

7 EXAMPLE SYSTEMC EXECUTION 14

8 BENCHMARKING & OPTIMIZATION 16

9 FILES 17

10 ENVIRONMENT 18

11 CONNECTING TO C++ 19

12 CONNECTING TO SYSTEMC 21

13 DIRECT PROGRAMMING INTERFACE (DPI) 21

14 CROSS COMPILATION 23

15 CONFIGURATION FILES 24

16 LANGUAGE STANDARD SUPPORT 25

17 LANGUAGE EXTENSIONS 27

1

Verilator-3.805 CONTENTS

18 LANGUAGE LIMITATIONS 32

19 ERRORS AND WARNINGS 38

20 FAQ/FREQUENTLY ASKED QUESTIONS 45

21 BUGS 51

22 HISTORY 51

23 CONTRIBUTORS 52

24 DISTRIBUTION 53

25 AUTHORS 53

26 SEE ALSO 53

2

Verilator-3.805 4 ARGUMENT SUMMARY

1 NAME

Verilator - Convert Verilog code to C++/SystemC

2 SYNOPSIS

verilator --help
verilator --version
verilator --cc [options] [top_level.v] [opt_c_files.cpp/c/cc/a/o/so]
verilator --sc [options] [top_level.v] [opt_c_files.cpp/c/cc/a/o/so]
verilator --sp [options] [top_level.v] [opt_c_files.cpp/c/cc/a/o/so]
verilator --lint-only [top_level.v]...

3 DESCRIPTION

Verilator converts synthesizable (not behavioral) Verilog code, plus some Synthesis,
SystemVerilog and Sugar/PSL assertions, into C++, SystemC or SystemPerl code.
It is not a complete simulator, just a compiler.

Verilator is invoked with parameters similar to GCC, Cadence Verilog-XL/NC-Verilog,
or Synopsys’s VCS. It reads the specified Verilog code, lints it, and optionally adds
coverage and waveform tracing code. For C++ and SystemC formats, it outputs .cpp
and .h files. For SystemPerl format, it outputs .sp files for the SystemPerl preproces-
sor, which greatly simplifies writing SystemC code and is available at http://www.veripool.org.

The files created by Verilator are then compiled with C++. The user writes a little
C++ wrapper file, which instantiates the top level module, and passes this filename
on the command line. These C files are compiled in C++, and linked with the
Verilated files.

The resulting executable will perform the actual simulation.

To get started, jump down to "EXAMPLE C++ EXECUTION".

4 ARGUMENT SUMMARY

This is a short summary of the arguments to Verilator. See the detailed descriptions
in the next sections for more information.

{file.v} Verilog top level filenames
{file.c/cc/cpp} Optional C++ files to compile in

3

Verilator-3.805 4 ARGUMENT SUMMARY

{file.a/o/so} Optional C++ files to link in

--assert Enable all assertions
--autoflush Flush streams after all $displays
--bbox-sys Blackbox unknown $system calls
--bbox-unsup Blackbox unsupported language features
--bin <filename> Override Verilator binary
-CFLAGS <flags> C++ Compiler flags for makefile
--cc Create C++ output
--cdc Clock domain crossing analysis
--compiler <compiler-name> Tune for specified C++ compiler
--coverage Enable all coverage
--coverage-line Enable line coverage
--coverage-toggle Enable toggle coverage
--coverage-user Enable PSL/SVL user coverage
--coverage-underscore Enable covarge of _signals
-D<var>[=<value>] Set preprocessor define
--debug Enable debugging
--debug-check Enable debugging assertions
--debugi <level> Enable debugging at a specified level
--debugi-<srcfile> <level> Enable debugging a source file at a level
+define+<var>+<value> Set preprocessor define
--dump-tree Enable dumping .tree files
-E Preprocess, but do not compile
--error-limit <value> Abort after this number of errors
--exe Link to create executable
-f <file> Parse options from a file
--help Display this help.
-I<dir> Directory to search for includes
+incdir+<dir> Directory to search for includes
--inhibit-sim Create function to turn off sim
--inline-mult <value> Tune module inlining
-LDFLAGS <flags> Linker pre-object flags for makefile
-LDLIBS <flags> Linker library flags for makefile
--language <lang> Language standard to parse
+libext+<ext>+[ext]... Extensions for finding modules
--lint-only Lint, but do not make output
--MMD Create .d dependency files
--MP Create phony dependency targets
--Mdir <directory> Name of output object directory
--mod-prefix <topname> Name to prepend to lower classes
--no-pins64 Don’t use uint64_t’s for 33-64 bit sigs
--no-skip-identical Disable skipping identical output
+notimingchecks Ignored
-O0 Disable optimizations
-O3 High performance optimizations
-O<optimization-letter> Selectable optimizations
-o <executable> Name of final executable
--output-split <bytes> Split .cpp files into pieces
--output-split-cfuncs <statements> Split .ccp functions

4

Verilator-3.805 5 ARGUMENTS

--pins-bv <bits> Specify types for top level ports
--pins-uint8 Specify types for top level ports
--pipe-filter <command> Filter all input through a script
--prefix <topname> Name of top level class
--profile-cfuncs Name functions for profiling
--private Debugging; see docs
--psl Enable PSL parsing
--public Debugging; see docs
--sc Create SystemC output
--sp Create SystemPerl output
--stats Create statistics file
-sv Enable SystemVerilog parsing
--top-module <topname> Name of top level input module
--trace Enable waveform creation
--trace-depth <levels> Depth of tracing
--trace-underscore Enable tracing of _signals
-U<var> Undefine preprocessor define
--unroll-count <loops> Tune maximum loop iterations
--unroll-stmts <stmts> Tune maximum loop body size
-V Verbose version and config
-v <filename> Verilog library
-Werror-<message> Convert warning to error
-Wfuture-<message> Disable unknown message warnings
-Wno-<message> Disable warning
-Wno-lint Disable all lint warnings
-x-assign <mode> Initially assign Xs to this value
-y <dir> Directory to search for modules

5 ARGUMENTS

{file.v}
Specifies the Verilog file containing the top module to be Verilated.

{file.c/.cc/.cpp/.cxx}
Specifies optional C++ files to be linked in with the Verilog code. If any
C++ files are specified in this way, Verilator will include a make rule that
generates a module executable. Without any C++ files, Verilator will stop at
the module__ALL.a library, and presume you’ll continue linking with make
rules you write yourself. See also the -CFLAGS option.

{file.a/.o/.so}
Specifies optional object or library files to be linked in with the Verilog code,
as a shorthand for -LDFLAGS "<file>". If any files are specified in this way,
Verilator will include a make rule that uses these files when linking the module
executable. This generally is only useful when used with the –exe option.

–assert
Enable all assertions, includes enabling the –psl flag. (If psl is not desired, but
other assertions are, use –assert –nopsl.)

5

Verilator-3.805 5 ARGUMENTS

See also –x-assign; setting "–x-assign unique" may be desirable.

–autoflush

After every $display or $fdisplay, flush the output stream. This insures that
messages will appear immediately but may reduce performance. Defaults off,
which will buffer output as provided by the normal C stdio calls.

–bbox-sys

Black box any unknown $system task or function calls. System tasks will be
simply NOPed, and system functions will be replaced by unsized zero. Argu-
ments to such functions will be parsed, but not otherwise checked. This prevents
errors when linting in the presence of company specific PLI calls.

–bbox-unsup

Black box some unsupported language features, currently UDP tables and the
cmos and tran gate primitives. This may enable linting the rest of the design
even when unsupported constructs are present.

–bin filename

Rarely needed. Override the default filename for Verilator itself. When a de-
pendency (.d) file is created, this filename will become a source dependency,
such that a change in this binary will have make rebuild the output files.

-CFLAGS flags

Add specified C compiler flags to the generated makefiles. When make is run on
the generated makefile these will be passed to the C++ compiler (gcc/g++/msvc++).

–cc

Specifies C++ without SystemC output mode; see also –sc and –sp.

–cdc

Experimental. Perform some clock domain crossing checks and issue related
warnings (CDCRSTLOGIC) and then exit; if warnings other than CDC warn-
ings are needed make a second run with –lint-only. Additional warning infor-
mation is also written to the file {prefix}__cdc.txt.

Currently only checks some items that other CDC tools missed; if you have
interest in adding more traditional CDC checks, please contact the authors.

–compiler compiler-name

Enables tunings and work-arounds for the specified C++ compiler.

gcc
Tune for Gnu C++, although generated code should work on almost any
compliant C++ compiler. Currently the default.

msvc
Tune for Microsoft Visual C++. This may reduce execution speed as it
enables several workarounds to avoid silly hardcoded limits in MSVC++.
This includes breaking deeply nested parenthesized expressions into sub-
expressions to avoid error C1009, and breaking deep blocks into functions
to avoid error C1061.

6

Verilator-3.805 5 ARGUMENTS

–coverage

Enables all forms of coverage, alias for "–coverage-line –coverage-toggle –coverage-
user".

–coverage-line

Specifies basic block line coverage analysis code should be inserted.

Coverage analysis adds statements at each code flow change point, which are
the branches of IF and CASE statements, a super-set of normal Verilog Line
Coverage. At each such branch a unique counter is incremented. At the end of
a test, the counters along with the filename and line number corresponding to
each counter are written into logs/coverage.pl.

Verilator automatically disables coverage of branches that have a $stop in them,
as it is assumed $stop branches contain an error check that should not occur.
A /*verilator coverage_block_off*/ comment will perform a similar function
on any code in that block or below, or /*verilator coverage_on/coverage_off*/
will disable coverage around lines of code.

Note Verilator may over-count combinatorial (non-clocked) blocks when those
blocks receive signals which have had the UNOPTFLAT warning disabled; for
most accurate results do not disable this warning when using coverage.

–coverage-toggle

Specifies signal toggle coverage analysis code should be inserted.

Every bit of every signal in a module has a counter inserted. The counter will
increment on every edge change of the corresponding bit.

Signals that are part of tasks or begin/end blocks are considered local variables
and are not covered. Signals that begin with underscores, are integers, or are
very wide (>256 bits total storage across all dimensions) are also not covered.

Hierarchy is compressed, such that if a module is instantiated multiple times,
coverage will be summed for that bit across ALL instantiations of that module
with the same parameter set. A module instantiated with different parameter
values is considered a different module, and will get counted separately.

Verilator makes a minimally-intelligent decision about what clock domain the
signal goes to, and only looks for edges in that clock domain. This means that
edges may be ignored if it is known that the edge could never be seen by the
receiving logic. This algorithm may improve in the future. The net result is
coverage may be lower than what would be seen by looking at traces, but the
coverage is a more accurate representation of the quality of stimulus into the
design.

There may be edges counted near time zero while the model stabilizes. It’s a
good practice to zero all coverage just before releasing reset to prevent counting
such behavior.

A /*verilator coverage_off/on */ comment pair can be used around signals that
do not need toggle analysis, such as RAMs and register files.

–coverage-underscore

Enable coverage of signals that start with an underscore. Normally, these signals
are not covered. See also –trace-underscore.

7

Verilator-3.805 5 ARGUMENTS

–coverage-user

Enables user inserted functional coverage. Currently, all functional coverage
points are specified using PSL which must be separately enabled with –psl.

For example, the following PSL statement will add a coverage point, with the
comment "DefaultClock":

// psl default clock = posedge clk;
// psl cover {cyc==9} report "DefaultClock,expect=1";

-Dvar=value

Defines the given preprocessor symbol. Same as +define; +define is fairly stan-
dard across Verilog tools while -D is an alias for GCC compatibility.

–debug

Select the debug built image of Verilator (if available), and enable more internal
assertions, debugging messages, and intermediate form dump files.

–debug-check

Rarely needed. Enable internal debugging assertion checks, without changing
debug verbosity. Enabled automatically when –debug specified.

–debugi <level> =item –debugi-<srcfile> <level>

Rarely needed - for developer use. Set internal debugging level globally or on
the specified source file to the specified level.

+define+var+value

Defines the given preprocessor symbol. Same as -D; +define is fairly standard
across Verilog tools while -D is an alias for GCC compatibility.

–dump-tree

Rarely needed. Enable writing .tree debug files. This is enabled with –debug,
so "–debug –no-dump-tree" may be useful if the dump files are large and not
desired.

-E

Preprocess the source code, but do not compile, as with ’gcc -E’. Output is
written to standard out. Beware of enabling debugging messages, as they will
also go to standard out.

–error-limit <value>

After this number of errors or warnings are encountered, exit. Defaults to 50.

–exe

Generate a executable. You will also need to pass additional .cpp files on the
command line that implement the main loop for your simulation.

-f file

Read the specified file, and act as if all text inside it was specified as command
line parameters. Note -f is fairly standard across Verilog tools.

8

Verilator-3.805 5 ARGUMENTS

–help
Displays this message and program version and exits.

-Idir
Add the directory to the list of directories that should be searched for include
directories or libraries. Same as +incdir and -y; +incdir and -y are fairly stan-
dard across Verilog tools while -I is an alias for GCC compatibility.

+incdir+dir
Add the directory to the list of directories that should be searched for include
directories or libraries. Same as -I and -y; +incdir and -y are fairly standard
across Verilog tools while -I is an alias for GCC compatibility.

–inhibit-sim
Rarely needed. Create a "inhibitSim(bool)" function to enable and disable
evaluation. This allows a upper level testbench to disable modules that are not
important in a given simulation, without needing to recompile or change the
SystemC modules instantiated.

–inline-mult value
Tune the inlining of modules. The default value of 2000 specifies that up to
2000 new operations may be added to the model by inlining, if more than this
number of operations would result, the module is not inlined. Larger values,
or a value <= 1 will inline everything, will lead to longer compile times, but
potentially faster runtimes. This setting is ignored for very small modules; they
will always be inlined, if allowed.

-LDFLAGS flags
Add specified C linker flags to the generated makefiles. When make is run
on the generated makefile these will be passed to the C++ linker (ld) *after*
the primary file being linked. This flag is called -LDFLAGS as that’s the
traditional name in simulators; it’s would have been better called LDLIBS as
that’s the Makefile variable it controls. (In Make, LDFLAGS is before the first
object, LDLIBS after. -L libraries need to be in the Make variable LDLIBS,
not LDFLAGS.)

–language value
Select the language to be used when first processing each Verilog file. The lan-
guage value must be "1364-1995", "1364-2001", "1364-2001", "1364-2005", or
"1800-2005". This should only be used for legacy code, as the preferable option
is to edit the code to repair new keywords, or add appropriate ‘begin_keywords.

+libext+ext+ext...
Specify the extensions that should be used for finding modules. If for example
module x is referenced, look in x.ext. Note +libext+ is fairly standard across
Verilog tools.

–lint-only
Check the files for lint violations only, do not create any other output.
If the design is not to be completely Verilated see also the –bbox-sys and –bbox-
unsup options.

9

Verilator-3.805 5 ARGUMENTS

–MMD

Enable creation of .d dependency files, used for make dependency detection,
similar to gcc -MMD option. On by default, use –no-MMD to disable.

–MP

When creating .d dependency files with –MMD, make phony targets. Similar
to gcc -MP option.

–Mdir directory

Specifies the name of the Make object directory. All generated files will be
placed in this directory. If not specified, "obj_dir" is used.

–mod-prefix topname

Specifies the name to prepend to all lower level classes. Defaults to the same
as –prefix.

–no-pins64

Backward compatible alias for "–pins-bv 33".

–no-skip-identical

Rarely needed. Disables skipping execution of Verilator if all source files are
identical, and all output files exist with newer dates.

+notimingchecks

Ignored for compatibility with other simulators.

-O0

Disables optimization of the model.

-O3

Enables slow optimizations. This may reduce simulation runtimes at the cost
of compile time. This currently sets –inline-mult -1.

-Ooptimization-letter

Rarely needed. Enables or disables a specific optimizations, with the opti-
mization selected based on the letter passed. A lowercase letter disables an
optimization, an upper case letter enables it. This is intended for debugging
use only; see the source code for version-dependent mappings of optimizations
to -O letters.

-o <executable>

Specify the name for the final executable built if using –exe. Defaults to the
–prefix if not specified.

–output-split bytes

Enables splitting the output .cpp/.sp files into multiple outputs. When a C++
file exceeds the specified number of operations, a new file will be created at
the next function boundary. In addition, any slow routines will be placed into
__Slow files. This accelerates compilation by as optimization can be disabled
on the slow routines, and the remaining files can be compiled on parallel ma-
chines. Using –output-split should have only a trivial impact on performance.

10

Verilator-3.805 5 ARGUMENTS

With GCC 3.3 on a 2GHz Opteron, –output-split 20000 will result in splitting
into approximately one-minute-compile chunks.

–output-split-cfuncs statements

Enables splitting functions in the output .cpp/.sp files into multiple functions.
When a generated function exceeds the specified number of operations, a new
function will be created. With –output-split, this will enable GCC to compile
faster, at a small loss in performance that gets worse with decreasing split
values. Note that this option is stronger than –output-split in the sense that
–output-split will not split inside a function.

–pins64

Backward compatible alias for "–pins-bv 65". Note that’s a 65, not a 64.

–pins-bv width

Specifies SystemC inputs/outputs of greater than or equal to width bits wide
should use sc_bv’s instead of uint32/uint64_t’s. The default is "–pins-bv 65".
Versions before Verilator 3.671 defaulted to "–pins-bv 33". The more sc_bv is
used, the worse for performance.

–pins-uint8

Specifies SystemC inputs/outputs that are smaller than the –pins-bv setting
and 8 bits or less should use uint8_t instead of uint32_t. Likewise pins of
width 9-16 will use uint16_t instead of uint32_t.

–pipe-filter command

Rarely needed and experimental. Verilator will spawn the specified command
as a subprocess pipe, to allow the command to perform custom edits on the
Verilog code before it reaches Verilator.

Before reading each Verilog file, Verilator will pass the file name to the sub-
process’ stdin with ’read_verilog "<filename>"’. The filter may then read the
file and perform any filtering it desires, and feeds the new file contents back
to Verilator on stdout with ’Content-Length’. Output to stderr from the filter
feeds through to Verilator’s stdout and if the filter exits with non-zero status
Verilator terminates. See the t/t_pipe_filter test for an example.

To debug the output of the filter, try using the -E option to see preprocessed
output.

–prefix topname

Specifies the name of the top level class and makefile. Defaults to V prepended
to the name of the –top-module switch, or V prepended to the first Verilog
filename passed on the command line.

–profile-cfuncs

Modify the created C++ functions to support profiling. The functions will be
minimized to contain one "basic" statement, generally a single always block
or wire statement. (Note this will slow down the executable by ˜5%.) Fur-
thermore, the function name will be suffixed with the basename of the Verilog
module and line number the statement came from. This allows gprof or oprofile
reports to be correlated with the original Verilog source statements.

11

Verilator-3.805 5 ARGUMENTS

–private
Opposite of –public. Is the default; this option exists for backwards compati-
bility.

–psl
Enable PSL parsing. Without this switch, PSL meta-comments are ignored. See
the –assert flag to enable all assertions, and –coverage-user to enable functional
coverage.

–public
This is only for historical debug use. Using it may result in mis-simulation of
generated clocks.
Declares all signals and modules public. This will turn off signal optimizations
as if all signals had a /*verilator public*/ comments and inlining. This will also
turn off inlining as if all modules had a /*verilator public_module*/, unless
the module specifically enabled it with /*verilator inline_module*/.

–sc
Specifies SystemC output mode; see also –cc and -sp.

–sp
Specifies SystemPerl output mode; see also –cc and -sc.

–stats
Creates a dump file with statistics on the design in {prefix}__stats.txt.

-sv
Specifies SystemVerilog language features should be enabled; equivalent to "–
language 1800-2005". This option is selected by default, it exists for compati-
bility with other simulators.

–top-module topname
When the input Verilog contains more than one top level module, specifies the
name of the top level Verilog module to become the top, and sets the default
for if –prefix is not used. This is not needed with standard designs with only
one top.

–trace
Adds waveform tracing code to the model. Verilator will generate additional
{prefix}__Trace*.cpp files that will need to be compiled. In addition veri-
lated_vcd_sc.cpp (for SystemC traces) or verilated_vcd_c.cpp (for both) must
be compiled and linked in. If using the Verilator generated Makefiles, these will
be added as source targets for you. If you’re not using the Verilator makefiles,
you will need to add these to your Makefile manually.
Having tracing compiled in may result in some small performance losses, even
when waveforms are not turned on during model execution.

–trace-depth levels
Specify the number of levels deep to enable tracing, for example –trace-level 1
to only see the top level’s signals. Defaults to the entire model. Using a small
number will decrease visibility, but greatly improve runtime and trace file size.

12

Verilator-3.805 5 ARGUMENTS

–trace-underscore

Enable tracing of signals that start with an underscore. Normally, these signals
are not output during tracing. See also –coverage-underscore.

-Uvar

Undefines the given preprocessor symbol.

–unroll-count loops

Rarely needed. Specifies the maximum number of loop iterations that may be
unrolled. See also BLKLOOPINIT warning.

–unroll-stmts statements

Rarely needed. Specifies the maximum number of statements in a loop for that
loop to be unrolled. See also BLKLOOPINIT warning.

-V

Shows the verbose version, including configuration information compiled into
Verilator. (Similar to perl -V.)

-v filename

Read the filename as a Verilog library. Any modules in the file may be used to
resolve cell instantiations in the top level module, else ignored. Note -v is fairly
standard across Verilog tools.

-Werror-message

Convert the specified warning message into a error message. This is gener-
ally to discourage users from violating important site-wide rules, for example
-Werror-NOUNOPTFLAT.

-Wfuture-message

Suppress unknown Verilator comments or warning messages with the given
message code. This is used to allow code written with pragmas for a later
version of Verilator to run under a older version; add -Wfuture- arguments for
each message code or comment that the new version supports which the older
version does not support.

-Wno-message

Disable the specified warning message.

-Wno-lint

Disable all lint related warning messages. This is equivalent to "-Wno-CASEINCOMPLETE
-Wno-CASEOVERLAP -Wno-CASEX -Wno-CASEWITHX -Wno-CMPCONST
-Wno-IMPLICIT -Wno-LITENDIAN -Wno-UNDRIVEN -Wno-UNSIGNED -
Wno-UNUSED -Wno-VARHIDDEN -Wno-WIDTH".

It is strongly recommended you cleanup your code rather than using this option,
it is only intended to be use when running test-cases of code received from third
parties.

-Wwarn-message

Enables the specified warning message.

13

Verilator-3.805 6 EXAMPLE C++ EXECUTION

-x-assign 0

-x-assign 1

-x-assign fast (default)

-x-assign unique

Controls the two-state value that is replaced when an assignment to X is en-
countered. -x-assign=fast, the default, converts all Xs to whatever is best for
performance. -x-assign=0 converts all Xs to 0s, and is also fast. -x-assign=1
converts all Xs to 1s, this is nearly as fast as 0, but more likely to find reset
bugs as active high logic will fire. -x-assign=unique will call a function to de-
termine the value, this allows randomization of all Xs to find reset bugs and is
the slowest, but safest for finding reset bugs in code.

If using -x-assign unique, you may want to seed your random number generator
such that each regression run gets a different randomization sequence. Use the
system’s srand48() or for Windows srand() function to do this. You’ll probably
also want to print any seeds selected, and code to enable rerunning with that
same seed so you can reproduce bugs.

-y dir

Add the directory to the list of directories that should be searched for include
directories or libraries. Same as +incdir and -I; +incdir and +y are fairly
standard across Verilog tools while -I is an alias for GCC compatibility.

6 EXAMPLE C++ EXECUTION

We’ll compile this example into C++.

mkdir test_our
cd test_our

cat <<EOF >our.v
module our;

initial begin \$display("Hello World"); \$finish; end
endmodule

EOF

cat <<EOF >sim_main.cpp
#include "Vour.h"
#include "verilated.h"
int main(int argc, char **argv, char **env) {

Verilated::commandArgs(argc, argv);
Vour* top = new Vour;
while (!Verilated::gotFinish()) { top->eval(); }
exit(0);

14

Verilator-3.805 7 EXAMPLE SYSTEMC EXECUTION

}
EOF

Now we run Verilator on our little example.

export VERILATOR_ROOT=/path/to/where/verilator/was/installed
$VERILATOR_ROOT/bin/verilator --cc our.v --exe sim_main.cpp

We can see the source code under the "obj_dir" directory. See the FILES section
below for descriptions of some of the files that were created.

ls -l obj_dir

We then can compile it

cd obj_dir
make -j -f Vour.mk Vour

(Verilator included a default compile rule and link rule, since we used –exe and passed
a .cpp file on the Verilator command line. You can also write your own compile rules,
as we’ll show in the SYSTEMC section.)

And now we run it

cd ..
obj_dir/Vour

And we get as output

Hello World
- our.v:2: Verilog $finish

Really, you’re better off writing a Makefile to do all this for you. Then, when your
source changes it will automatically run all of these steps. See the test_c directory
in the distribution for an example.

7 EXAMPLE SYSTEMC EXECUTION

This is an example similar to the above, but using SystemPerl.

15

Verilator-3.805 7 EXAMPLE SYSTEMC EXECUTION

mkdir test_our_sc
cd test_our_sc

cat <<EOF >our.v
module our (clk);

input clk; // Clock is required to get initial activation
always @ (posedge clk)

begin \$display("Hello World"); \$finish; end
endmodule

EOF

cat <<EOF >sc_main.cpp
#include "Vour.h"
int sc_main(int argc, char **argv) {

Verilated::commandArgs(argc, argv);
sc_clock clk ("clk",10, 0.5, 3, true);
Vour* top;
top = new Vour("top"); // SP_CELL (top, Vour);
top->clk(clk); // SP_PIN (top, clk, clk);
while (!Verilated::gotFinish()) { sc_start(1, SC_NS); }
exit(0);

}
EOF

Now we run Verilator on our little example.

export VERILATOR_ROOT=/path/to/where/verilator/was/installed
$VERILATOR_ROOT/bin/verilator --sp our.v

Then we convert the SystemPerl output to SystemC.

cd obj_dir
export SYSTEMPERL=/path/to/where/systemperl/kit/came/from
$SYSTEMPERL/sp_preproc --preproc *.sp

(You can also skip the above sp_preproc by getting pure SystemC from Verilator by
replacing the verilator –sp flag in the previous step with -sc.)

We then can compile it

make -j -f Vour.mk Vour__ALL.a
make -j -f Vour.mk ../sc_main.o verilated.o

And link with SystemC. Note your path to the libraries may vary, depending on the
operating system.

16

Verilator-3.805 8 BENCHMARKING & OPTIMIZATION

export SYSTEMC=/path/to/where/systemc/was/built/or/installed
g++ -L$SYSTEMC/lib-linux ../sc_main.o Vour__ALL*.o verilated.o \

-o Vour -lsystemc

And now we run it

cd ..
obj_dir/Vour

And we get the same output as the C++ example:

Hello World
- our.v:2: Verilog $finish

Really, you’re better off using a Makefile to do all this for you. Then, when your
source changes it will automatically run all of these steps. See the test_sp directory
in the distribution for an example.

8 BENCHMARKING & OPTIMIZATION

For best performance, run Verilator with the "-O3 -x-assign=fast –noassert" flags.
The -O3 flag will require longer compile times, and -x-assign=fast may increase the
risk of reset bugs in trade for performance; see the above documentation for these
flags.

Minor Verilog code changes can also give big wins. You should not have any UNOPT-
FLAT warnings from Verilator. Fixing these warnings can result in huge improve-
ments; one user fixed their one UNOPTFLAT warning by making a simple change to
a clock latch used to gate clocks and gained a 60% performance improvement.

Beyond that, the performance of a Verilated model depends mostly on your C++
compiler and size of your CPU’s caches.

By default, the lib/verilated.mk file has optimization turned off. This is for the benefit
of new users, as it improves compile times at the cost of runtimes. To add optimization
as the default, set one of three variables, OPT, OPT_FAST, or OPT_SLOW in
lib/verilated.mk. Or, just for one run, pass them on the command line to make:

make OPT_FAST="-O2" -f Vour.mk Vour__ALL.a

OPT_FAST specifies optimizations for those programs that are part of the fast path,
mostly code that is executed every cycle. OPT_SLOW specifies optimizations for

17

Verilator-3.805 9 FILES

slow-path files (plus tracing), which execute only rarely, yet take a long time to
compile with optimization on. OPT specifies overall optimization and affects all
compiles, including those OPT_FAST and OPT_SLOW affect. For best results, use
OPT="-O2", and link with "-static". Nearly the same results can be had with much
better compile times with OPT_FAST="-O1 -fstrict-aliasing".

Unfortunately, using the optimizer with SystemC files can result in compiles taking
several minutes. (The SystemC libraries have many little inlined functions that drive
the compiler nuts.)

For best results, use GCC 3.3 or newer. GCC 3.2 and earlier have optimization bugs
around pointer aliasing detection, which can result in 2x performance losses.

If you will be running many simulations on a single compile, investigate feedback
driven compilation. With GCC, using -fprofile-arcs, then -fbranch-probabilities will
yield another 15% or so.

You may uncover further tuning possibilities by profiling the Verilog code. Use Veri-
lator’s –profile-cfuncs, then GCC’s -g -pg. You can then run either oprofile or gprof
to see where in the C++ code the time is spent. Run the gprof output through
verilator_profcfunc and it will tell you what Verilog line numbers on which most of
the time is being spent.

When done, please let the author know the results. I like to keep tabs on how Verilator
compares, and may be able to suggest additional improvements.

9 FILES

All output files are placed in the output directory name specified with the -Mdir
option, or "obj_dir" if not specified.

Verilator creates the following files in the output directory:

{prefix}.mk // Make include file for compiling
{prefix}_classes.mk // Make include file with class names

For -cc and -sc mode, it also creates:

{prefix}.cpp // Top level C++ file
{prefix}.h // Top level header
{prefix}{each_verilog_module}.cpp // Lower level internal C++ files
{prefix}{each_verilog_module}.h // Lower level internal header files

For -sp mode, instead of .cpp and .h it creates:

18

Verilator-3.805 10 ENVIRONMENT

{prefix}.sp // Top level SystemC file
{prefix}{each_verilog_module}.sp // Lower level internal SC files

In certain optimization modes, it also creates:

{prefix}__Dpi.h // DPI import and export declarations
{prefix}__Inlines.h // Inline support functions
{prefix}__Slow.cpp // Constructors and infrequent routines
{prefix}__Syms.cpp // Global symbol table C++
{prefix}__Syms.h // Global symbol table header
{prefix}__Trace.cpp // Wave file generation code (--trace)
{prefix}__cdc.txt // Clock Domain Crossing checks (--cdc)
{prefix}__stats.txt // Statistics (--stats)

It also creates internal files that can be mostly ignored:

{each_verilog_module}.vpp // Post-processed verilog (--debug)
{prefix}.flags_vbin // Verilator dependencies
{prefix}.flags_vpp // Pre-processor dependencies
{prefix}__verFiles.dat // Timestamps for skip-identical
{prefix}{misc}.d // Make dependencies (-MMD)
{prefix}{misc}.dot // Debugging graph files (--debug)
{prefix}{misc}.tree // Debugging files (--debug)

After running Make, the C++ compiler should produce the following:

{prefix} // Final executable (w/--exe argument)
{prefix}__ALL.a // Library of all Verilated objects
{prefix}{misc}.o // Intermediate objects

10 ENVIRONMENT

OBJCACHE

Optionally specifies a caching or distribution program to place in front of all
runs of the C++ Compiler. For example, "objcache –read –write", or "ccache".
If using distcc, it would generally be run under either objcache or ccache; see
the documentation for those programs.

OBJCACHE_JOBS

Optionally lists Make flags that specifies parallel make jobs. For example a 4
CPU system may use "-j 6" to request 6 parallel compiles when making.

SYSTEMC

19

Verilator-3.805 11 CONNECTING TO C++

Required for SystemC output mode. If set, specifies the directory containing
the SystemC distribution. This is used to find the SystemC include files. If
not specified, it will come from a default optionally specified at configure time
(before Verilator was compiled).

SYSTEMC_ARCH

Specifies the architecture name used by the SystemC kit. This is the part after
the dash in the lib-{...} directory name created by a ’make’ in the SystemC
distribution. If not set, Verilator will try to intuit the proper setting, or use the
default optionally specified at configure time (before Verilator was compiled). .

SYSTEMC_CXX_FLAGS

Specifies additional flags that are required to be passed to GCC when building
the SystemC model.

SYSTEMPERL

Specifies the directory containing the SystemPerl distribution kit. This is used
to find the SystemPerl library and include files. If not specified, it will come from
a default optionally specified at configure time (before Verilator was compiled).
See also SYSTEMPERL_INCLUDE.

SYSTEMPERL_INCLUDE

Specifies the directory containing the Verilog-Perl include .cpp files, from the
src/ directory of the SystemPerl kit. If not specified, it will be computed from
the SYSTEMPERL environment variable if it is set, and if SYSTEMPERL is
not set SYSTEMPERL_INCLUDE will come from a default optionally speci-
fied at configure time (before Verilator was compiled).

VCS_HOME

If set, specifies the directory containing the Synopsys VCS distribution. When
set, a ’make test’ in the Verilator distribution will also run VCS baseline re-
gression tests.

VERILATOR_BIN

If set, specifies an alternative name of the Verilator binary. May be used for
debugging and selecting between multiple operating system builds.

VERILATOR_ROOT

Specifies the directory containing the distribution kit. This is used to find the
executable, Perl library, and include files. If not specified, it will come from a
default optionally specified at configure time (before Verilator was compiled).

11 CONNECTING TO C++

Verilator creates a .h and .cpp file for the top level module and all modules under it.
See the test_c directory in the kit for an example.

20

Verilator-3.805 11 CONNECTING TO C++

After the modules are completed, there will be a module.mk file that may be used
with Make to produce a module__ALL.a file with all required objects in it. This is
then linked with the user’s top level to create the simulation executable.

The user must write the top level of the simulation. Here’s a simple example:

#include <verilated.h> // Defines common routines
#include "Vtop.h" // From Verilating "top.v"

Vtop *top; // Instantiation of module

unsigned int main_time = 0; // Current simulation time

double sc_time_stamp () { // Called by $time in Verilog
return main_time;

}

int main(int argc, char** argv) {
Verilated::commandArgs(argc, argv); // Remember args

top = new Vtop; // Create instance

top->reset_l = 0; // Set some inputs

while (!Verilated::gotFinish()) {
if (main_time > 10) {

top->reset_l = 1; // Deassert reset
}
if ((main_time % 10) == 1) {

top->clk = 1; // Toggle clock
}
if ((main_time % 10) == 6) {

top->clk = 0;
}
top->eval(); // Evaluate model
cout << top->out << endl; // Read a output
main_time++; // Time passes...

}

top->final(); // Done simulating
// // (Though this example doesn’t get here)

}

21

Verilator-3.805 13 DIRECT PROGRAMMING INTERFACE (DPI)

Note signals are read and written as member variables of the lower module. You
call the eval() method to evaluate the model. When the simulation is complete call
the final() method to wrap up any SystemVerilog final blocks, and complete any
assertions.

12 CONNECTING TO SYSTEMC

Verilator will convert the top level module to a SC_MODULE. This module will plug
directly into a SystemC netlist.

The SC_MODULE gets the same pinout as the Verilog module, with the following
type conversions: Pins of a single bit become bool. Pins 2-32 bits wide become
uint32_t’s. Pins 33-64 bits wide become sc_bv’s or uint64_t’s depending on the
–no-pins64 switch. Wider pins become sc_bv’s. (Uints simulate the fastest so are
used where possible.)

Lower modules are not pure SystemC code. This is a feature, as using the SystemC pin
interconnect scheme everywhere would reduce performance by an order of magnitude.

13 DIRECT PROGRAMMING INTERFACE (DPI)

Verilator supports SystemVerilog Direct Programming Interface import and export
statements. Only the SystemVerilog form ("DPI-C") is supported, not the original
Synopsys-only DPI.

DPI Example

In the SYSTEMC example above, if you wanted to import C++ functions into Ver-
ilog, put in our.v:

import "DPI-C" function integer add (input integer a, input integer b);

initial begin
$display("%x + %x = %x", 1, 2, add(1,2));

endtask

Then after Verilating, Verilator will create a file Vour__Dpi.h with the prototype to
call this function:

extern int add (int a, int b);

22

Verilator-3.805 13 DIRECT PROGRAMMING INTERFACE (DPI)

From the sc_main.cpp file (or another .cpp file passed to the Verilator command line,
or the link), you’d then:

#include "svdpi.h"
#include "Vour__Dpi.h"
int add (int a, int b) { return a+b; }

DPI System Task/Functions

Verilator extends the DPI format to allow using the same scheme to efficiently add
system functions. Simply use a dollar-sign prefixed system function name for the
import, but note it must be escaped.

export "DPI-C" function integer \$myRand;

initial $display("myRand=%d", $myRand());

Going the other direction, you can export Verilog tasks so they can be called from
C++:

export "DPI-C" task publicSetBool;

task publicSetBool;
input bit in_bool;
var_bool = in_bool;

endtask

Then after Verilating, Verilator will create a file Vour__Dpi.h with the prototype to
call this function:

extern bool publicSetBool(bool in_bool);

From the sc_main.cpp file, you’d then:

#include "Vour__Dpi.h"
publicSetBool(value);

Or, alternatively, call the function under the design class. This isn’t DPI compatible
but is easier to read and better supports multiple designs.

#include "Vour__Dpi.h"
Vour::publicSetBool(value);
// or top->publicSetBool(value);

23

Verilator-3.805 14 CROSS COMPILATION

DPI Display Functions

Verilator allows writing $display like functions using this syntax:

import "DPI-C" function void
\$my_display (input string formatted /*verilator sformat*/);

The /*verilator sformat*/ indicates that this function accepts a $display like format
specifier followed by any number of arguments to satisfy the format.

DPI Header Isolation

Verilator places the IEEE standard header files such as svdpi.h into a separate in-
clude directory, vltstd (VeriLaTor STandarD). When compiling most applications
$VERILATOR_ROOT/include/vltstd would be in the include path along with the
normal $VERILATOR_ROOT/include. However, when compiling Verilated models
into other simulators which have their own svdpi.h and similar standard files with
different contents, the vltstd directory should not be included to prevent picking up
incompatible definitions.

Public Functions

Instead of DPI exporting, there’s also Verilator public functions, which are slightly
faster, but less compatible.

14 CROSS COMPILATION

Verilator supports cross-compiling Verilated code. This is generally used to run Ver-
ilator on a Linux system and produce C++ code that is then compiled on Windows.

Cross compilation involves up to three different OSes. The build system is where you
configured and compiled Verilator, the host system where you run Verilator, and the
target system where you compile the Verilated code and run the simulation.

Currently, Verilator requires the build and host system type to be the same, though
the target system type may be different. To support this, ./configure and make
Verilator on the build system. Then, run Verilator on the host system. Finally, the
output of Verilator may be compiled on the different target system.

To support this, none of the files that Verilator produces will reference any configure
generated build-system specific files, such as config.h (which is renamed in Verilator
to config_build.h to reduce confusion.) The disadvantage of this approach is that

24

Verilator-3.805 15 CONFIGURATION FILES

include/verilatedos.h must self-detect the requirements of the target system, rather
than using configure.

The target system may also require edits to the Makefiles, the simple Makefiles pro-
duced by Verilator presume the target system is the same type as the build system.

Cadence NC-SystemC Models

Similar to compiling Verilated designs with gcc, Verilated designs may be compiled
inside other simulators that support C++ or SystemC models. One such simulator
is Cadence’s NC-SystemC, part of their Incisive Verification Suite. (Highly recom-
mended.)

Using the example files above, the following command will build the model underneath
NC:

cd obj_dir
ncsc_run \

sc_main.cpp \
Vour__ALLcls.cpp \
Vour__ALLsup.cpp \
verilated.cpp

For larger designs you’ll want to automate this using makefiles, which pull the names
of the .cpp files to compile in from the make variables generated in obj_dir/Vour_classes.mk.

15 CONFIGURATION FILES

In addition to the command line, warnings and other features may be controlled by
configuration files, typically named with the .vlt extension. An example:

‘verilator_config
lint_off -msg WIDTH
lint_off -msg CASEX -file "silly_vendor_code.v"

This disables WIDTH warnings globally, and CASEX for a specific file.

Configuration files are parsed after the normal Verilog preprocessing, so ‘ifdefs, ‘de-
fines, and comments may be used as if it were normal Verilog code.

The grammar of configuration commands is as follows:

‘verilator_config

25

Verilator-3.805 16 LANGUAGE STANDARD SUPPORT

Take remaining text up the the next ‘verilog mode switch and treat it as Veri-
lator configuration commands.

coverage_off [-file "<filename>" [-lines <line> [- <line>]]]

Disable coverage for the specified filename (or all files if omitted) and range of
line numbers (or all lines if omitted). Often used to ignore an entire module for
coverage analysis purposes.

lint_off -msg <message> [-file "<filename>" [-lines <line> [- <line>]]]

Disables the specified lint warning in the specified filename (or all files if omit-
ted) and range of line numbers (or all lines if omitted).

tracing_off [-file "<filename>" [-lines <line> [- <line>]]]

Disable waveform tracing for all future signals declared in the specified filename
(or all files if omitted) and range of line numbers (or all lines if omitted).

16 LANGUAGE STANDARD SUPPORT

Verilog 2001 (IEEE 1364-2001) Support

Verilator supports most Verilog 2001 language features. This includes signed num-
bers, "always @*", generate statements, multidimensional arrays, localparam, and
C-style declarations inside port lists.

Verilog 2005 (IEEE 1364-2005) Support

Verilator supports most Verilog 2005 language features. This includes the ‘begin_keywords
and ‘end_keywords compiler directives, $clog2, and the uwire keyword.

SystemVerilog 2005 (IEEE 1800-2005) Support

Verilator currently has some support for SystemVerilog synthesis constructs. As Sys-
temVerilog features enter common usage they are added; please file a bug if a feature
you need is missing.

Verilator supports ==? and !=? operators, ++ and – in some contexts, $bits,
$countones, $error, $fatal, $info, $isunknown, $onehot, $onehot0, $unit, $warning,
always_comb, always_ff, always_latch, bit, byte, chandle, do-while, enum, export,
final, import, int, logic, longint, package, program, shortint, time, typedef, var, void,
priority case/if, and unique case/if.

It also supports .name and .* interconnection.

26

Verilator-3.805 16 LANGUAGE STANDARD SUPPORT

Verilator partially supports concurrent assert and cover statements; see the enclosed
coverage tests for the syntax which is allowed.

SystemVerilog 2009 (IEEE 1800-2009) Support

Verilator implements a full SystemVerilog 2009 preprocessor, including function call-
like preprocessor defines, default define arguments, ‘__FILE__, ‘__LINE__ and
‘undefineall.

Verilator currently has some support for SystemVerilog 2009 synthesis constructs. As
SystemVerilog features enter common usage they are added; please file a bug if a
feature you need is missing.

Sugar/PSL Support

Most future work is being directed towards improving SystemVerilog assertions in-
stead of PSL. If you are using these PSL features, please contact the author as they
may be depreciated in future versions.

With the –assert switch, Verilator enables support of the Property Specification Lan-
guage (PSL), specifically the simple PSL subset without time-branching primitives.
Verilator currently only converts PSL assertions to simple "if (...) error" statements,
and coverage statements to increment the line counters described in the coverage
section.

Verilator implements these keywords: assert, assume (same as assert), default (for
clocking), countones, cover, isunknown, onehot, onehot0, report, and true.

Verilator implements these operators: -> (logical if).

Verilator does not support SEREs yet. All assertion and coverage statements must
be simple expressions that complete in one cycle. PSL vmode/vprop/vunits are not
supported. PSL statements must be in the module they reference, at the module
level where you would put an initial... statement.

Verilator only supports (posedge CLK) or (negedge CLK), where CLK is the name
of a one bit signal. You may not use arbitrary expressions as assertion clocks.

Synthesis Directive Assertion Support

With the –assert switch, Verilator reads any "//synopsys full_case" or "// synop-
sys parallel_case" directives. The same applies to any "//cadence" or "// ambit
synthesis" directives of the same form.

When these synthesis directives are discovered, Verilator will either formally prove

27

Verilator-3.805 17 LANGUAGE EXTENSIONS

the directive to be true, or failing that, will insert the appropriate code to detect
failing cases at runtime and print an "Assertion failed" error message.

Verilator likewise also asserts any "unique" or "priority" SystemVerilog keywords on
case statements. However, "unique if" and "priority if" are currently simply ignored.

17 LANGUAGE EXTENSIONS

The following additional constructs are the extensions Verilator supports on top of
standard Verilog code. Using these features outside of comments or ‘ifdef’s may break
other tools.

‘__FILE__

The __FILE__ define expands to the current filename as a string, like C++’s
__FILE__. This was incorporated into to the 1800-2009 standard (but sup-
ported by Verilator since 2006!)

‘__LINE__

The __LINE__ define expands to the current filename as a string, like C++’s
__LINE__. This was incorporated into to the 1800-2009 standard (but sup-
ported by Verilator since 2006!)

‘error string

This will report an error when encountered, like C++’s #error.

_(expr)

A underline followed by an expression in parenthesis returns a Verilog expres-
sion. This is different from normal parenthesis in special contexts, such as PSL
expressions, and can be used to embed bit concatenation ({}) inside of PSL
statements.

$c(string, ...);

The string will be embedded directly in the output C++ code at the point
where the surrounding Verilog code is compiled. It may either be a standalone
statement (with a trailing ; in the string), or a function that returns up to a
32-bit number (without a trailing ;). This can be used to call C++ functions
from your Verilog code.

String arguments will be put directly into the output C++ code. Expression
arguments will have the code to evaluate the expression inserted. Thus to call
a C++ function, $c("func(",a,")") will result in ’func(a)’ in the output C++
code. For input arguments, rather than hard-coding variable names in the string
$c("func(a)"), instead pass the variable as an expression $c("func(",a,")"). This
will allow the call to work inside Verilog functions where the variable is flattened
out, and also enable other optimizations.

If you will be reading or writing any Verilog variables inside the C++ functions,
the Verilog signals must be declared with /*verilator public*/.

28

Verilator-3.805 17 LANGUAGE EXTENSIONS

You may also append a arbitrary number to $c, generally the width of the out-
put. [signal_32_bits = $c32("...");] This allows for compatibility with other
simulators which require a differently named PLI function name for each differ-
ent output width.

$display, $write, $fdisplay, $fwrite, $sformat, $swrite

Format arguments may use C fprintf sizes after the % escape. Per the Verilog
standard, %x prints a number with the natural width, and %0x prints a number
with minimum width. Verilator extends this so %5x prints 5 digits per the C
standard (it’s unspecified in Verilog).

‘coverage_block_off

Specifies the entire begin/end block should be ignored for coverage analysis.
Same as /* verilator coverage_block_off */.

‘systemc_header

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into the output .h file’s header. Despite the name of this
macro, this also works in pure C++ code.

‘systemc_ctor

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into the C++ class constructor. Despite the name of this
macro, this also works in pure C++ code.

‘systemc_dtor

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into the C++ class destructor. Despite the name of this
macro, this also works in pure C++ code.

‘systemc_interface

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into the C++ class interface. Despite the name of this macro,
this also works in pure C++ code.

‘systemc_imp_header

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into the header of all files for this C++ class implementation.
Despite the name of this macro, this also works in pure C++ code.

‘systemc_implementation

Take remaining text up to the next ‘verilog or ‘systemc_... mode switch and
place it verbatim into a single file of the C++ class implementation. Despite
the name of this macro, this also works in pure C++ code.

If you will be reading or writing any Verilog variables in the C++ functions, the
Verilog signals must be declared with /*verilator public*/. See also the public
task feature; writing a accessor may result in cleaner code.

‘VERILATOR

‘verilator

29

Verilator-3.805 17 LANGUAGE EXTENSIONS

‘verilator3

The VERILATOR, verilator and verilator3 defines are set by default so you
may ‘ifdef around compiler specific constructs.

‘verilator_config

Take remaining text up the the next ‘verilog mode switch and treat it as Veri-
lator configuration commands.

‘verilog

Switch back to processing Verilog code after a ‘systemc_... mode switch. The
Verilog code returns to the last language mode specified with ‘begin_keywords,
or SystemVerilog if none were specified.

/*verilator clock_enable*/

Used after a signal declaration to indicate the signal is used to gate a clock,
and the user takes responsibility for insuring there are no races related to it.
(Typically by adding a latch, and running static timing analysis.) This will
cause the clock gate to be ignored in the scheduling algorithm, improving per-
formance. It’s also a good idea to enable the IMPERFECTSCH warning, to
insure all clock enables are properly recognized.

/*verilator coverage_block_off*/

Specifies the entire begin/end block should be ignored for coverage analysis
purposes.

/*verilator coverage_off*/

Specifies that following lines of code should have coverage disabled. Often used
to ignore an entire module for coverage analysis purposes.

/*verilator coverage_on*/

Specifies that following lines of code should have coverage re-enabled (if appro-
priate –coverage flags are passed) after being disabled earlier with /*verilator
coverage_off*/.

/*verilator inline_module*/

Specifies the module the comment appears in may be inlined into any modules
that use this module. This is useful to speed up simulation time with some small
loss of trace visibility and modularity. Note signals under inlined submodules
will be named submodule__DOT__subsignal as C++ does not allow "." in
signal names. SystemPerl when tracing such signals will replace the __DOT__
with the period.

/*verilator isolate_assignments*/

Used after a signal declaration to indicate the assignments to this signal in any
blocks should be isolated into new blocks. When there is a large combinatorial
block that is resulting in a UNOPTFLAT warning, attaching this to the signal
causing a false loop may clear up the problem.

IE, with the following

30

Verilator-3.805 17 LANGUAGE EXTENSIONS

reg splitme /* verilator isolate_assignments*/;
// Note the placement of the semicolon above
always @* begin
if (....) begin

splitme =;
other assignments

end
end

Verilator will internally split the block that assigns to "splitme" into two blocks:

It would then internally break it into (sort of):

// All assignments excluding those to splitme
always @* begin
if (....) begin

other assignments
end

end
// All assignments to splitme
always @* begin
if (....) begin

splitme =;
end

end

/*verilator lint_off msg*/

Disable the specified warning message for any warnings following the comment.

/*verilator lint_on msg*/

Re-enable the specified warning message for any warnings following the com-
ment.

/*verilator lint_restore*/

After a /*verilator lint_save*/, pop the stack containing lint message state.
Often this is useful at the bottom of include files.

/*verilator lint_save*/

Push the current state of what lint messages are turned on or turned off to a
stack. Later meta-comments may then lint_on or lint_off specific messages,
then return to the earlier message state by using /*verilator lint_restore*/. For
example:

// verilator lint_save
// verilator lint_off SOME_WARNING
... // code needing SOME_WARNING turned off
// verilator lint_restore

If SOME_WARNING was on before the lint_off, it will now be restored to on,
and if it was off before the lint_off it will remain off.

31

Verilator-3.805 17 LANGUAGE EXTENSIONS

/*verilator no_inline_task*/

Used in a function or task variable definition section to specify the function or
task should not be inlined into where it is used. This may reduce the size of
the final executable when a task is used a very large number of times. For this
flag to work, the task and tasks below it must be pure; they cannot reference
any variables outside the task itself.

/*verilator public*/ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal. This
will also declare this module public, otherwise use /*verilator public_flat*/.

Instead of using public variables, consider instead making a DPI or public func-
tion that accesses the variable. This is nicer as it provides an obvious entry
point that is also compatible across simulators.

/*verilator public*/ (task/function)

Used inside the declaration section of a function or task declaration to indicate
the function or task should be made into a C++ function, public to outside
callers. Public tasks will be declared as a void C++ function, public functions
will get the appropriate non-void (bool, uint32_t, etc) return type. Any input
arguments will become C++ arguments to the function. Any output arguments
will become C++ reference arguments. Any local registers/integers will become
function automatic variables on the stack.

Wide variables over 64 bits cannot be function returns, to avoid exposing com-
plexities. However, wide variables can be input/outputs; they will be passed as
references to an array of 32 bit numbers.

Generally, only the values of stored state (flops) should be written, as the model
will NOT notice changes made to variables in these functions. (Same as when
a signal is declared public.)

You may want to use DPI exports instead, as it’s compatible with other simu-
lators.

/*verilator public_flat*/ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal.
This will not declare this module public, which means the name of the signal
or path to it may change based upon the module inlining which takes place.

/*verilator public_flat_rd*/ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared public_flat (see above), but read-only.

/*verilator public_flat_rw @(<edge_list>) */ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared public_flat_rd (see above), and also writable, where writes
should be considered to have the timing specified by the given sensitivity edge
list.

32

Verilator-3.805 18 LANGUAGE LIMITATIONS

/*verilator public_module*/

Used after a module statement to indicate the module should not be inlined
(unless specifically requested) so that C code may access the module. Verilator
automatically sets this attribute when the module contains any public signals
or ‘systemc_ directives. Also set for all modules when using the –public switch.

/*verilator sc_clock*/

Rarely needed. Used after a input declaration to indicate the signal should
be declared in SystemC as a sc_clock instead of a bool. This was needed in
SystemC 1.1 and 1.2 only; versions 2.0 and later do not require clock pins to
be sc_clocks and this is no longer needed.

/*verilator sformat*/

Attached to the final input of a function or task "input string" to indicate
the function or task should pass all remaining arguments through $sformatf.
This allows creation of DPI functions with $display like behavior. See the
test_regress/t/t_dpi_display.v file for an example.

/*verilator tracing_off*/

Disable waveform tracing for all future signals that are declared in this module.
Often this is placed just after a primitive’s module statement, so that the entire
module is not traced.

/*verilator tracing_on*/

Re-enable waveform tracing for all future signals that are declared.

18 LANGUAGE LIMITATIONS

There are some limitations and lack of features relative to a commercial simulator,
by intent. User beware.

It is strongly recommended you use a lint tool before running this program. Verilator
isn’t designed to easily uncover common mistakes that a lint program will find for
you.

Synthesis Subset

Verilator supports only the Synthesis subset with a few minor additions such as $stop,
$finish and $display. That is, you cannot use hierarchical references, events or similar
features of the Verilog language. It also simulates as Synopsys’s Design Compiler
would; namely a block of the form:

always @ (x) y = x & z;

33

Verilator-3.805 18 LANGUAGE LIMITATIONS

This will recompute y when there is even a potential for change in x or a change in
z, that is when the flops computing x or z evaluate (which is what Design Compiler
will synthesize.) A compliant simulator would only calculate y if x changes. Use
verilog-mode’s /*AS*/ or Verilog 2001’s always @* to reduce missing activity items.
Avoid putting $displays in combo blocks, as they may print multiple times when not
desired, even on compliant simulators as event ordering is not specified.

Dotted cross-hierarchy references

Verilator supports dotted references to variables, functions and tasks in different
modules. However, references into named blocks and function-local variables are not
supported. The portion before the dot must have a constant value; for example a[2].b
is acceptable, while a[x].b is not.

References into generated and arrayed instances use the instance names specified in
the Verilog standard; arrayed instances are named {cellName}[{instanceNumber}] in
Verilog, which becomes {cellname}__BRA__{instanceNumber}__KET__ inside
the generated C++ code.

Verilator creates numbered "genblk" when a begin: name is not specified around a
block inside a generate statement. These numbers may differ between other simu-
lators, but the Verilog specification does not allow users to use these names, so it
should not matter.

If you are having trouble determining where a dotted path goes wrong, note that
Verilator will print a list of known scopes to help your debugging.

Floating Point

Floating Point numbers are not synthesizable, and so not supported.

Latches

Verilator is optimized for edge sensitive (flop based) designs. It will attempt to do
the correct thing for latches, but most performance optimizations will be disabled
around the latch.

Time

All delays (#) are ignored, as they are in synthesis.

34

Verilator-3.805 18 LANGUAGE LIMITATIONS

Two State

Verilator is a two state simulator, not a four state simulator. However, it has two
features which uncover most initialization bugs (including many that a four state
simulator will miss.)

First, assigning a variable to a X will actually assign the variable to a random value
(see the -x-assign switch.) Thus if the value is actually used, the random value
should cause downstream errors. Integers also randomize, even though the Verilog
2001 specification says they initialize to zero.

Identity comparisons (=== or !==) are converted to standard ==/!== when neither
side is a constant. This may make the expression result differ from a four state
simulator.

All variables are initialized using a function. By running several random simulation
runs you can determine that reset is working correctly. On the first run, the function
initializes variables to zero. On the second, have it initialize variables to one. On the
third and following runs have it initialize them randomly. If the results match, reset
works. (Note this is what the hardware will really do.) In practice, just setting all
variables to one at startup finds most problems.

Tri/Inout

Verilator converts some simple tristate structures into two state. An assignment of
the form:

inout driver;
wire driver = (enable) ? output_value : 1’bz;

Will be converted to

input driver__in; // Value being driven in from "external" drivers
output driver__en; // True if driven from this module
output driver__enout; // Value being driven from this module

Pullup, pulldown, bufif0, bufif1, notif0, notif1 are also supported. External logic will
be needed to combine these signals with any external drivers.

Tristate drivers are not supported inside functions and tasks; a inout there will be
considered a two state variable that is read and written instead of a four state variable.

35

Verilator-3.805 18 LANGUAGE LIMITATIONS

Functions & Tasks

All functions and tasks will be inlined (will not become functions in C.) The only
support provided is for simple statements in tasks (which may affect global variables).

Recursive functions and tasks are not supported. All inputs and outputs are auto-
matic, as if they had the Verilog 2001 "automatic" keyword prepended. (If you don’t
know what this means, Verilator will do what you probably expect – what C does.
The default behavior of Verilog is different.)

Generated Clocks

Verilator attempts to deal with generated clocks correctly, however new cases may
turn up bugs in the scheduling algorithm. The safest option is to have all clocks as
primary inputs to the model, or wires directly attached to primary inputs.

Ranges must be big-bit-endian

Bit ranges must be numbered with the MSB being numbered greater or the same as
the LSB. Little-bit-endian busses [0:15] are not supported as they aren’t easily made
compatible with C++.

Gate Primitives

The 2-state gate primitives (and, buf, nand, nor, not, or, xnor, xor) are directly
converted to behavioral equivalents. The 3-state and MOS gate primitives are not
supported. Tables are not supported.

Specify blocks

All specify blocks and timing checks are ignored.

Array Initialization

When initializing a large array, you need to use non-delayed assignments. Verilator
will tell you when this needs to be fixed; see the BLKLOOPINIT error for more
information.

36

Verilator-3.805 18 LANGUAGE LIMITATIONS

Array Out of Bounds

Writing a memory element that is outside the bounds specified for the array may cause
a different memory element inside the array to be written instead. For power-of-2
sized arrays, Verilator will give a width warning and the address. For non-power-of-
2-sizes arrays, index 0 will be written.

Reading a memory element that is outside the bounds specified for the array will give
a width warning and wrap around the power-of-2 size. For non-power-of-2 sizes, it
will return a unspecified constant of the appropriate width.

Assertions

Verilator is beginning to add support for assertions. Verilator currently only converts
assertions to simple "if (...) error" statements, and coverage statements to increment
the line counters described in the coverage section.

Verilator does not support SEREs yet. All assertion and coverage statements must
be simple expressions that complete in one cycle. (Arguably SEREs are much of the
point, but one must start somewhere.)

Language Keyword Limitations

This section describes specific limitations for each language keyword.

‘__FILE__, ‘__LINE__, ‘begin_keywords, ‘begin_keywords, ‘begin_keywords,
‘begin_keywords, ‘begin_keywords, ‘define, ‘else, ‘elsif, ‘end_keywords,
‘endif, ‘error, ‘ifdef, ‘ifndef, ‘include, ‘line, ‘systemc_ctor, ‘systemc_dtor,
‘systemc_header, ‘systemc_imp_header, ‘systemc_implementation,
‘systemc_interface, ‘timescale, ‘undef, ‘verilog

Fully supported.

always, always_comb, always_ff, always_latch, and, assign, begin, buf,
byte, case, casex, casez, default, defparam, do-while, else, end, end-
case, endfunction, endgenerate, endmodule, endspecify, endtask, fi-
nal, for, function, generate, genvar, if, initial, inout, input, int, inte-
ger, localparam, logic, longint, macromodule, module, nand, negedge,
nor, not, or, output, parameter, posedge, reg, scalared, shortint,
signed, supply0, supply1, task, time, tri, typedef, var, vectored,
while, wire, xnor, xor

Generally supported.

chandle

Treated as a "longint"; does not yet warn about operations that are specified
as illegal on chandles.

37

Verilator-3.805 18 LANGUAGE LIMITATIONS

priority if, unique if

Priority and unique if’s are treated as normal ifs and not asserted to be full nor
unique.

specify specparam

All specify blocks and timing checks are ignored.

string

String is supported only to the point that they can be passed to DPI imports.

timeunit, timeprecision

All timing control statements are ignored.

uwire

Verilator does not perform warning checking on uwires, it treats the uwire
keyword as if it were the normal wire keyword.

$bits, $countones, $error, $fatal, $finish, $info, $isunknown, $onehot, $one-
hot0, $readmemb, $readmemh, $signed, $stime, $stop, $time, $un-
signed, $warning.

Generally supported.

$display, $write, $fdisplay, $fwrite, $swrite

$display and friends must have a constant format string as the first argument
(as with C’s printf). The rare usage which lists variables standalone without a
format is not supported.

$displayb, $displayh, $displayo, $writeb, $writeh, $writeo, etc

The sized display functions are rarely used and so not supported. Replace them
with a $write with the appropriate format specifier.

$finish, $stop

The rarely used optional parameter to $finish and $stop is ignored.

$fopen, $fclose, $fdisplay, $feof, $fflush, $fgetc, $fgets, $fscanf, $fwrite

File descriptors passed to the file PLI calls must be file descriptors, not MCDs,
which includes the mode parameter to $fopen being mandatory. Verilator will
convert the integer used to hold the file descriptor into a internal FILE*. To
prevent core dumps due to mis-use, and because integers are 32 bits while
FILE*s may be 64 bits, the descriptor must be stored in a reg [63:0] rather
than an integer. The define ‘verilator_file_descriptor in verilated.v can be
used to hide this difference.

$fscanf, $sscanf

Only integer formats are supported; %e, %f, %m, %r, %v, and %z are not
supported.

$fullskew, $hold, $nochange, $period, $recovery, $recrem, $removal, $setup,
$setuphold, $skew, $timeskew, $width

All specify blocks and timing checks are ignored.

38

Verilator-3.805 19 ERRORS AND WARNINGS

$random
$random does not support the optional argument to set the seed. Use the srand
function in C to accomplish this, and note there is only one random number
generator (not one per module).

$readmemb, $readmemh
Read memory commands should work properly. Note Verilator and the Verilog
specification does not include support for readmem to multi-dimensional arrays.

$realtime
Treated as $time.

$test$plusargs, $value$plusargs
Supported, but the instantiating C++/SystemC testbench must call

Verilated::commandArgs(argc, argv);

to register the command line before calling $test$plusargs or $value$plusargs.

$timeformat
Not supported as Verilator needs to determine all formatting at compile time.
Generally you can just ifdef them out for no ill effect. Note also VL_TIME_MULTIPLER
can be defined at compile time to move the decimal point when displaying all
times, model wide.

19 ERRORS AND WARNINGS

Warnings may be disabled in two ways. First, when the warning is printed it will
include a warning code. Simply surround the offending line with a warn_off/warn_on
pair:

// verilator lint_off UNSIGNED
if (‘DEF_THAT_IS_EQ_ZERO <= 3) $stop;
// verilator lint_on UNSIGNED

Warnings may also be globally disabled by invoking Verilator with the -Wno-warning
switch. This should be avoided, as it removes all checking across the designs, and
prevents other users from compiling your code without knowing the magic set of
disables needed to successfully compile your design.

List of all warnings:

BLKANDNBLK
BLKANDNBLK is an error that a variable comes from a mix of blocked and
non-blocking assignments. Generally, this is caused by a register driven by both
combo logic and a flop:

39

Verilator-3.805 19 ERRORS AND WARNINGS

always @ (posedge clk) foo[0] <= ...
always @* foo[1] = ...

Simply use a different register for the flop:

always @ (posedge clk) foo_flopped[0] <= ...
always @* foo[0] = foo_flopped[0];
always @* foo[1] = ...

This is good coding practice anyways.
It is also possible to disable this error when one of the assignments is inside a
public task.
Ignoring this warning may make Verilator simulations differ from other simula-
tors.

BLKLOOPINIT
This indicates that the initialization of an array needs to use non-delayed as-
signments. This is done in the interest of speed; if delayed assignments were
used, the simulator would have to copy large arrays every cycle. (In smaller
loops, loop unrolling allows the delayed assignment to work, though it’s a bit
slower than a non-delayed assignment.) Here’s an example

always @ (posedge clk)
if (~reset_l) begin

for (i=0; i<‘ARRAY_SIZE; i++) begin
array[i] = 0; // Non-delayed for verilator

end

This message is only seen on large or complicated loops because Verilator gen-
erally unrolls small loops. You may want to try increasing –unroll-count (and
occasionally –unroll-stmts) which will raise the small loop bar to avoid this
error.

CASEINCOMPLETE
Warns that inside a case statement there is a stimulus pattern for which there
is no case item specified. This is bad style, if a case is impossible, it’s better
to have a "default: $stop;" or just "default: ;" so that any design assumption
violations will be discovered in simulation.
Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEOVERLAP
Warns that inside a case statement you have case values which are detected to
be overlapping. This is bad style, as moving the order of case values will cause
different behavior. Generally the values can be respecified to not overlap.
Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEX
Warns that it is simply better style to use casez, and ? in place of x’s. See
http://www.sunburst-design.com/papers/CummingsSNUG1999Boston_FullParallelCase_rev1_1.pdf

Ignoring this warning will only suppress the lint check, it will simulate correctly.

40

Verilator-3.805 19 ERRORS AND WARNINGS

CASEWITHX

Warns that a case statement contains a constant with a x. Verilator is two-state
so interpret such items as always false. Note a common error is to use a X in a
case or casez statement item; often what the user instead intended is to use a
casez with ?.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CDCRSTLOGIC

With –cdc only, warns that asynchronous flop reset terms come from other than
primary inputs or flopped outputs, creating the potential for reset glitches.

CMPCONST

Warns that you are comparing a value in a way that will always be constant.
For example "X > 1" will always be true when X is a single bit wide.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

COMBDLY

Warns that you have a delayed assignment inside of a combinatorial block. Us-
ing delayed assignments in this way is considered bad form, and may lead to
the simulator not matching synthesis. If this message is suppressed, Verilator,
like synthesis, will convert this to a non-delayed assignment, which may result in
logic races or other nasties. See http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1_2.pdf

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

GENCLK

Warns that the specified signal is generated, but is also being used as a clock.
Verilator needs to evaluate sequential logic multiple times in this situation. In
somewhat contrived cases having any generated clock can reduce performance
by almost a factor of two. For fastest results, generate ALL clocks outside in
C++/SystemC and make them primary inputs to your Verilog model. (However
once need to you have even one, don’t sweat additional ones.)

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

IMPERFECTSCH

Warns that the scheduling of the model is not absolutely perfect, and some
manual code edits may result in faster performance. This warning defaults
to off, and must be turned on explicitly before the top module statement is
processed.

IMPLICIT

Warns that a wire is being implicitly declared (it is a single bit wide output
from a sub-module.) While legal in Verilog, implicit declarations only work
for single bit wide signals (not buses), do not allow using a signal before it
is implicitly declared by a cell, and can lead to dangling nets. A better op-
tion is the /*AUTOWIRE*/ feature of Verilog-Mode for Emacs, available from
http://www.veripool.org/

Ignoring this warning will only suppress the lint check, it will simulate correctly.

41

Verilator-3.805 19 ERRORS AND WARNINGS

IMPURE

Warns that a task or function that has been marked with /*verilator no_inline_task*/
references variables that are not local to the task. Verilator cannot schedule
these variables correctly.

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

LITENDIAN

Warns that a vector is declared with little endian bit numbering (i.e. [0:7]). Big
endian bit numbering is now the overwhelming standard, and little numbering
is now thus often due to simple oversight instead of intent.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

MODDUP

Error that a module has multiple definitions. Generally this indicates a coding
error, or a mistake in a library file and it’s good practice to have one module per
file to avoid these issues. For some gate level netlists duplicates are unavoidable,
and this error may be disabled.

MULTIDRIVEN

Warns that the specified signal comes from multiple always blocks. This is often
unsupported by synthesis tools, and is considered bad style. It will also cause
longer runtimes due to reduced optimizations.

Ignoring this warning will only slow simulations, it will simulate correctly.

MULTITOP

Error that there are multiple top level modules, that is modules not instantiated
by any other module. Verilator only supports a single top level, if you need
more, create a module that wraps all of the top modules.

Often this error is because some low level cell is being read in, but is not really
needed. The best solution is to insure that each module is in a unique file by
the same name. Otherwise, make sure all library files are read in as libraries
with -v, instead of automatically with -y.

REDEFMACRO

Warns that you have redefined the same macro with a different value, for ex-
ample:

‘define MACRO def1
//...
‘define MACRO otherdef

The best solution is to use a different name for the second macro. If this is not
possible, add a undef to indicate the code is overriding the value:

‘define MACRO def1
//...
‘undef MACRO
‘define MACRO otherdef

42

Verilator-3.805 19 ERRORS AND WARNINGS

STMTDLY
Warns that you have a statement with a delayed time in front of it, for example:

#100 $finish;

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

SYMRSVDWORD
Error that a symbol matches a C++ reserved word and using this as a symbol
name would result in odd C compiler errors. You may disable this error message
as you would disable warnings, but the symbol will be renamed by Verilator to
avoid the conflict.

TASKNSVAR
Error when a call to a task or function has a output from that task tied to a
non-simple signal. Instead connect the task output to a temporary signal of the
appropriate width, and use that signal to set the appropriate expression as the
next statement. For example:

task foo; output sig; ... endtask
always @* begin

foo(bus_we_select_from[2]); // Will get TASKNSVAR error
end

Change this to:

reg foo_temp_out;
always @* begin

foo(foo_temp_out);
bus_we_select_from[2] = foo_temp_out;

end

Verilator doesn’t do this conversion for you, as some more complicated cases
would result in simulator mismatches.

UNDRIVEN
Warns that the specified signal is never sourced.
Ignoring this warning will only suppress the lint check, it will simulate correctly.

UNOPT
Warns that due to some construct, optimization of the specified signal or block
is disabled. The construct should be cleaned up to improve runtime.
A less obvious case of this is when a module instantiates two submodules. Inside
submodule A, signal I is input and signal O is output. Likewise in submodule
B, signal O is an input and I is an output. A loop exists and a UNOPT warning
will result if AI & AO both come from and go to combinatorial blocks in both
submodules, even if they are unrelated always blocks. This affects performance
because Verilator would have to evaluate each submodule multiple times to
stabilize the signals crossing between the modules.
Ignoring this warning will only slow simulations, it will simulate correctly.

43

Verilator-3.805 19 ERRORS AND WARNINGS

UNOPTFLAT

Warns that due to some construct, optimization of the specified signal is dis-
abled. The signal specified includes a complete scope to the signal; it may
be only one particular usage of a multiply instantiated block. The construct
should be cleaned up to improve runtime; two times better performance may
be possible by fixing these warnings.

Unlike the UNOPT warning, this occurs after netlist flattening, and indicates
a more basic problem, as the less obvious case described under UNOPT does
not apply.

Often UNOPTFLAT is caused by logic that isn’t truly circular as viewed by
synthesis which analyzes interconnection per-bit, but is circular to simulation
which analyzes per-bus:

wire [2:0] x = {x[1:0],shift_in};

This statement needs to be evaluated multiple times, as a change in "shift_in"
requires "x" to be computed 3 times before it becomes stable. This is because
a change in "x" requires "x" itself to change value, which causes the warning.

For significantly better performance, split this into 2 separate signals:

wire [2:0] xout = {x[1:0],shift_in};

and change all receiving logic to instead receive "xout". Alternatively, change
it to

wire [2:0] x = {xin[1:0],shift_in};

and change all driving logic to instead drive "xin".

With this change this assignment needs to be evaluated only once. These sort
of changes may also speed up your traditional event driven simulator, as it will
result in fewer events per cycle.

The most complicated UNOPTFLAT path we’ve seen was due to low bits of a
bus being generated from an always statement that consumed high bits of the
same bus processed by another series of always blocks. The fix is the same;
split it into two separate signals generated from each block.

The UNOPTFLAT warning may also be due to clock enables, identified from
the reported path going through a clock gating cell. To fix these, use the
clock_enable meta comment described above.

The UNOPTFLAT warning may also occur where outputs from a block of logic
are independent, but occur in the same always block. To fix this, use the
isolate_assignments meta comment described above.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNSIGNED

Warns that you are comparing a unsigned value in a way that implies it is
signed, for example "X < 0" will always be true when X is unsigned.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

44

Verilator-3.805 19 ERRORS AND WARNINGS

UNUSED

Warns that the specified signal is never sinked. This is a future message, cur-
rently Verilator will not produce this warning.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

VARHIDDEN

Warns that a task, function, or begin/end block is declaring a variable by the
same name as a variable in the upper level module or begin/end block (thus
hiding the upper variable from being able to be used.) Rename the variable to
avoid confusion when reading the code.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTH

Warns that based on width rules of Verilog, two operands have different widths.
Verilator generally can intuit the common usages of widths, and you shouldn’t
need to disable this message like you do with most lint programs. Generally
other than simple mistakes, you have two solutions:

If it’s a constant 0 that’s 32 bits or less, simply leave it unwidthed. Verilator
considers zero to be any width needed.

Concatenate leading zeros when doing arithmetic. In the statement

wire [5:0] plus_one = from[5:0] + 6’d1 + carry[0];

The best fix, which clarifies intent and will also make all tools happy is:

wire [5:0] plus_one = from[5:0] + 6’d1 + {5’d0,carry[0]};

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTHCONCAT

Warns that based on width rules of Verilog, a concatenate or replication has a
indeterminate width. In most cases this violates the Verilog rule that widths
inside concatenates and replicates must be sized, and should be fixed in the
code.

wire [63:0] concat = {1,2};

An example where this is technically legal (though still bad form) is:

parameter PAR = 1;
wire [63:0] concat = {PAR,PAR};

The correct fix is to either size the 1 ("32’h1"), or add the width to the param-
eter definition ("parameter [31:0]"), or add the width to the parameter usage
("{PAR[31:0],PAR[31:0]}".

The following describes the less obvious errors:

45

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

Internal Error

This error should never occur first, though may occur if earlier warnings or
error messages have corrupted the program. If there are no other warnings or
errors, submit a bug report.

Unsupported:

This error indicates that you are using a Verilog language construct that is not
yet supported in Verilator. See the Limitations chapter.

Verilated model didn’t converge

Verilator sometimes has to evaluate combinatorial logic multiple times, usually
around code where a UNOPTFLAT warning was issued, but disabled. For
example:

always @ (a) b=~a;
always @ (b) a=b

will toggle forever and thus the executable will give the didn’t converge error
to prevent an infinite loop.

To debug this, run Verilator with –profile-cfuncs. Run make on the gener-
ated files with "OPT=-DVL_DEBUG". Then call Verilated::debug(1) in your
main.cpp.

This will cause each change in a variable to print a message. Near the bottom
you’ll see the code and variable that causes the problem. For the program
above:

CHANGE: filename.v:1: b
CHANGE: filename.v:2: a

20 FAQ/FREQUENTLY ASKED QUESTIONS

Does it run under Windows?

Yes, using Cygwin. Verilated output should also compile under Microsoft Visual
C++ Version 7 or newer, but this is not tested by the author.

Can you provide binaries?

Verilator is available as a RPM for SuSE, Fedora, and perhaps other systems;
this is done by porters and may slightly lag the primary distribution. If there
isn’t a binary build for your distribution, how about you set one up? Please
contact the authors for assistance.

Note people sometimes request binaries when they are having problems with
their C++ compiler. Alas, binaries won’t help this, as in the end a fully working
C++ compiler is required to compile the output of Verilator.

How can it be faster than (name-the-simulator)?

Generally, the implied part of the question is "... with all of their manpower
they can put into it."

46

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

Most commercial simulators have to be Verilog compliant, meaning event driven.
This prevents them from being able to reorder blocks and make netlist-style op-
timizations, which are where most of the gains come from.

Non-compliance shouldn’t be scary. Your synthesis program isn’t compliant, so
your simulator shouldn’t have to be – and Verilator is closer to the synthesis
interpretation, so this is a good thing for getting working silicon.

Will Verilator output remain under my own copyright?

Yes, it’s just like using GCC on your programs; this is why Verilator uses the
"GNU *Lesser* Public License Version 3" instead of the more typical "GNU
Public License". See the licenses for details, but in brief, if you change Verilator
itself or the header files Verilator includes, you must make the source code
available under the GNU Lesser Public License. However, Verilator output
(the Verilated code) only "include"s the licensed files, and so you are NOT
required to release any output from Verilator.

You also have the option of using the Perl Artistic License, which again does
not require you release your Verilog or generated code, and also allows you to
modify Verilator for internal use without distributing the modified version. But
please contribute back to the community!

One limit is that you cannot under either license release a commercial Ver-
ilog simulation product incorporating Verilator without making the source code
available.

Why is Verilation so slow?

Verilator needs more memory than the resulting simulator will require, as Ver-
ilator creates internally all of the state of the resulting simulator in order to
optimize it. If it takes more than a minute or so (and you’re not using –debug
since debug is disk bound), see if your machine is paging; most likely you need
to run it on a machine with more memory. Verilator is a full 64 bit application
and may use more than 4GB, but about 1GB is the maximum typically needed.

How do I generate waveforms (traces) in C++?

See the next question for tracing in SystemC mode.

Add the –trace switch to Verilator, and in your top level C code, call Ver-
ilated::traceEverOn(true). Then create a VerilatedVcdC object, and in your
main loop call "trace_object->dump(time)" every time step, and finally call
"trace_object->close()". For an example, see below and the test_c/sim_main.cpp
file of the distribution.

You also need to compile verilated_vcd_c.cpp and add it to your link, prefer-
ably by adding the dependencies in $(VK_GLOBAL_OBJS) to your Makefile’s
link rule. This is done for you if using the Verilator –exe flag.

Note you can also call ->trace on multiple Verilated objects with the same trace
file if you want all data to land in the same output file.

Note also older versions of Verilator used the SystemPerl package and Sp-
TraceVcdC class. This still works, but is depreciated as it requires strong
coupling between the Verilator and SystemPerl versions.

#include "verilated_vcd_c.h"

47

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

...
int main(int argc, char **argv, char **env) {

...
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
topp->trace (tfp, 99);
tfp->open ("obj_dir/t_trace_ena_cc/simx.vcd");
...
while (sc_time_stamp() < sim_time && !Verilated::gotFinish()) {

main_time += #;
tfp->dump (main_time);

}
tfp->close();

}

How do I generate waveforms (traces) in SystemC?

Add the –trace switch to Verilator, and in your top level C sc_main code, in-
clude verilated_vcd_sc.h. Then call Verilated::traceEverOn(true). Then create
a VerilatedVcdSc object as you would create a normal SystemC trace file. For
an example, see the call to VerilatedVcdSc in the test_sp/sc_main.cpp file of
the distribution, and below.

Alternatively you may use the C++ trace mechanism described in the previous
question, however the timescale and timeprecision will not inherited from your
SystemC settings.

You also need to compile verilated_vcd_sc.cpp and verilated_vcd_c.cpp and
add them to your link, preferably by adding the dependencies in $(VK_GLOBAL_OBJS)
to your Makefile’s link rule. This is done for you if using the Verilator –exe flag.

Note you can also call ->trace on multiple Verilated objects with the same trace
file if you want all data to land in the same output file.

#include "verilated_vcd_sc.h"
...
int main(int argc, char **argv, char **env) {

...
Verilated::traceEverOn(true);
VerilatedVcdSc* tfp = new VerilatedVcdSc;
topp->trace (tfp, 99);
tfp->open ("obj_dir/t_trace_ena_cc/simx.vcd");
...
sc_start(1);
...
tfp->close();

}

How do I view waveforms (traces)?

Verilator makes standard VCD (Value Change Dump) files. They are viewable
with the public domain Dinotrace or GtkWave programs, or any of the many
commercial offerings.

48

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

How do I reduce the size of large waveform (trace) files?

First, instead of calling VerilatedVcdC->open at the beginning of time, delay
calling it until the time stamp where you want to tracing to begin. Likewise
you can also call VerilatedVcdC->open before the end of time (perhaps a short
period after you detect a verification error.)

Next, add /*verilator tracing_off*/ to any very low level modules you never
want to trace (such as perhaps library cells). Finally, use the –trace-depth
option to limit the depth of tracing, for example –trace-depth 1 to see only the
top level signals.

Also be sure you write your trace files to a local disk, instead of to a network
disk. Network disks are generally far slower.

How do I do coverage analysis?

Verilator supports both block (line) coverage and user inserted functional cov-
erage. Both currently require SystemPerl output mode and the SystemPerl
package.

First, run verilator with the –coverage option. If you’re using your own makefile,
compile the model with the GCC flag -DSP_COVERAGE_ENABLE (if using
Verilator’s, it will do this for you.)

Run your tests in different directories. Each test will create a logs/coverage.pl
file.

After running all of your tests, the vcoverage utility (from the SystemPerl pack-
age) is executed. Vcoverage reads the logs/coverage.pl file(s), and creates an
annotated source code listing showing code coverage details.

For an example, after running ’make test’ in the Verilator distribution, see the
test_sp/logs/coverage_source directory. Grep for lines starting with ’%’ to see
what lines Verilator believes need more coverage.

Where is the translate_off command? (How do I ignore a construct?)

Translate on/off pragmas are generally a bad idea, as it’s easy to have mis-
matched pairs, and you can’t see what another tool sees by just preprocessing
the code. Instead, use the preprocessor; Verilator defines the "VERILATOR"
define for you, so just wrap the code in a ifndef region:

‘ifndef VERILATOR
Something_Verilator_Dislikes;

‘endif

Why do I get "unexpected ‘do’" or "unexpected ‘bit’" errors?

Do, bit, ref, return, and other words are now SystemVerilog keywords. You
should change your code to not use them to insure it works with newer tools. Al-
ternatively, surround them by the Verilog 2005/SystemVerilog begin_keywords
pragma to indicate Verilog 2001 code.

‘begin_keywords "1364-2001"
integer bit; initial bit = 1;

‘end_keywords

49

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

If you want the whole file to be parsed as Verilog 2001, just create a file with

‘begin_keywords "1364-2001"

and add it before other Verilog files on the command line. (Note this will also
change the default for –prefix, so if you’re not using –prefix, you will now need
to.)

How do I prevent my assertions from firing during reset?

Call Verilated::assertOn(false) before you first call the model, then turn it back
on after reset. It defaults to true. When false, all assertions controlled by
–assert are disabled.

Why do I get "undefined reference to ‘sc_time_stamp()’"?

In C++ (non SystemC) code you need to define this function so that the sim-
ulator knows the current time. See the "CONNECTING TO C++" examples.

Why do I get "undefined reference to ‘VL_RAND_RESET_I’ or ‘Veri-
lated::...’"?

You need to link your compiled Verilated code against the verilated.cpp file
found in the include directory of the Verilator kit. This is one target in the
$(VK_GLOBAL_OBJS) make variable, which should be part of your Make-
file’s link rule.

Is the PLI supported?

No, but the DPI is.

More specifically, the common PLI-ish calls $display, $finish, $stop, $time,
$write are converted to C++ equivalents. You can also use the "import DPI"
SystemVerilog feature to call C code (see the chapter above). If you want some-
thing more complex, since Verilator emits standard C++ code, you can simply
write your own C++ routines that can access and modify signal values without
needing any PLI interface code, and call it with $c("{any_c++_statement}").

How do I make a Verilog module that contain a C++ object?

You need to add the object to the structure that Verilator creates, then use $c
to call a method inside your object. The test_regress/t/t_extend_class files
show an example of how to do this.

How do I get faster build times?

Between GCC 3.0 to 3.3, each compiled progressively slower, thus if you can
use GCC 2.95, or GCC 3.4 you’ll have faster builds. Two ways to cheat are
to compile on parallel machines and avoid compilations altogether. See the
–output-split option, and the web for the ccache, distcc and icecream pack-
ages, and the Make::Cache package available from http://www.veripool.org/.
Make::Cache will skip GCC runs between identical source builds, even across
different users. You can use the OBJCACHE environment variable to use these
CC wrappers.

50

Verilator-3.805 20 FAQ/FREQUENTLY ASKED QUESTIONS

Why do so many files need to recompile when I add a signal?

Adding a new signal requires the symbol table to be recompiled. Verilator uses
one large symbol table, as that results in 2-3 less assembly instructions for each
signal access. This makes the execution time 10-15% faster, but can result in
more compilations when something changes.

How do I access functions/tasks in C?

Use the SystemVerilog Direct Programming Interface. You write a Verilog func-
tion or task with input/outputs that match what you want to call in with C.
Then mark that function as an external function. See the DPI chapter in the
manual.

How do I access signals in C?

The best thing is to make a SystemVerilog "export DPI task" or function that
accesses that signal, as described in the DPI chapter in the manual and DPI
tutorials on the web. This will allow Verilator to better optimize the model and
should be portable across simulators.

If you really want raw access to the signals, declare the signals you will be
accessing with a /*verilator public*/ comment before the closing semicolon.
Then scope into the C++ class to read the value of the signal, as you would
any other member variable.

Signals are the smallest of 8 bit chars, 16 bit shorts, 32 bit longs, or 64 bit long
longs that fits the width of the signal. Generally, you can use just uint32_t’s
for 1 to 32 bits, or uint64_t for 1 to 64 bits, and the compiler will properly
up-convert smaller entities.

Signals wider than 64 bits are stored as an array of 32-bit uint32_t’s. Thus
to read bits 31:0, access signal[0], and for bits 63:32, access signal[1]. Unused
bits (for example bit numbers 65-96 of a 65 bit vector) will always be zero. if
you change the value you must make sure to pack zeros in the unused bits or
core-dumps may result. (Because Verilator strips array bound checks where it
believes them to be unnecessary.)

In the SYSTEMC example above, if you had in our.v:

input clk /*verilator public*/;
// Note the placement of the semicolon above

From the sc_main.cpp file, you’d then:

#include "Vour.h"
#include "Vour_our.h"
cout << "clock is " << top->v->clk << endl;

In this example, clk is a bool you can read or set as any other variable. The
value of normal signals may be set, though clocks shouldn’t be changed by your
code or you’ll get strange results.

Should a module be in Verilog or SystemC?

Sometimes there is a block that just interconnects cells, and have a choice as
to if you write it in Verilog or SystemC. Everything else being equal, best

51

Verilator-3.805 22 HISTORY

performance is when Verilator sees all of the design. So, look at the hierarchy
of your design, labeling cells as to if they are SystemC or Verilog. Then:

A module with only SystemC cells below must be SystemC.

A module with a mix of Verilog and SystemC cells below must be SystemC.
(As Verilator cannot connect to lower-level SystemC cells.)

A module with only Verilog cells below can be either, but for best performance
should be Verilog. (The exception is if you have a design that is instantiated
many times; in this case Verilating one of the lower modules and instantiating
that Verilated cells multiple times into a SystemC module *may* be faster.)

21 BUGS

First, check the the coding limitations section.

Next, try the –debug switch. This will enable additional internal assertions, and may
help identify the problem.

Finally, reduce your code to the smallest possible routine that exhibits the bug. Even
better, create a test in the test_regress/t directory, as follows:

cd test_regress
cp -p t/t_EXAMPLE.pl t/t_BUG.pl
cp -p t/t_EXAMPLE.v t/t_BUG.v

Edit t/t_BUG.pl to suit your example; you can do anything you want in the Verilog
code there; just make sure it retains the single clk input and no outputs. Now, the
following should fail:

cd test_regress
t/t_BUG.pl

Finally, report the bug using the bug tracker at http://www.veripool.org/verilator.
The bug will become publicly visible; if this is unacceptable, mail the bug report to
wsnyder@wsnyder.org.

22 HISTORY

Verilator was conceived in 1994 by Paul Wasson at the Core Logic Group at Digital
Equipment Corporation. The Verilog code that was converted to C was then merged
with a C based CPU model of the Alpha processor and simulated in a C based
environment called CCLI.

52

Verilator-3.805 23 CONTRIBUTORS

In 1995 Verilator started being used also for Multimedia and Network Processor
development inside Digital. Duane Galbi took over active development of Verilator,
and added several performance enhancements. CCLI was still being used as the shell.

In 1998, through the efforts of existing DECies, mainly Duane Galbi, Digital gra-
ciously agreed to release the source code. (Subject to the code not being resold,
which is compatible with the GNU Public License.)

In 2001, Wilson Snyder took the kit, and added a SystemC mode, and called it
Verilator2. This was the first packaged public release.

In 2002, Wilson Snyder created Verilator3 by rewriting Verilator from scratch in
C++. This added many optimizations, yielding about a 2-5x performance gain.

In 2009, major SystemVerilog and DPI language support was added.

Currently, various language features and performance enhancements are added as the
need arises. Verilator is now about 3x faster than in 2002, and is faster than many
popular commercial simulators.

23 CONTRIBUTORS

Many people have provided ideas and other assistance with Verilator.

The major corporate sponsors of Verilator, by providing significant contributions of
time or funds include include Compaq Corporation, Digital Equipment Corporation,
Intel Corporation, Mindspeed Technologies Inc., MicroTune Inc., picoChip Designs
Ltd., Sun Microsystems, Nauticus Networks, and SiCortex Inc.

The people who have contributed major functionality are Byron Bradley, Lane Brooks,
Duane Galbi, Paul Wasson, and Wilson Snyder. Major testers include Jeff Dutton,
Ralf Karge, David Hewson, Wim Michiels, and Gene Weber.

Some of the people who have provided ideas and feedback for Verilator include David
Addison, Hans Van Antwerpen, Vasu Arasanipalai, Jens Arm, J Baxter, Jeremy Ben-
nett, David Black, Gregg Bouchard, Christopher Boumenot, Byron Bradley, Bryan
Brady, Lane Brooks, John Brownlee, Lawrence Butcher, Chris Candler, Lauren Carl-
son, Donal Casey, Robert A. Clark, Allan Cochrane, Gunter Dannoritzer, Bernard
Deadman, John Deroo, John Dickol, Danny Ding, Alex Duller, Jeff Dutton, Robert
Farrell, Eugen Fekete, Andrea Foletto, Bob Fredieu, Shankar Giri, Sam Gladstone,
Chitlesh Goorah, Thomas Hawkins, David Hewson, Jae Hossell, Ben Jackson, Mike
Kagen, Guy-Armand Kamendje, Vasu Kandadi, Patricio Kaplan, Ralf Karge, Dan
Katz, Sol Katzman, Jonathan Kimmitt, Gernot Koch, Soon Koh, Steve Kolecki, Steve
Lang, Stephane Laurent, Charlie Lind, Dan Lussier, Fred Ma, Duraid Madina, Mark
Marshall, Wim Michiels, Dennis Muhlestein, John Murphy, Richard Myers, Dim-
itris Nalbantis, Paul Nitza, Pete Nixon, Lisa Noack, Mark Nodine, Andreas Olofs-
son, Niranjan Prabhu, Oleg Rodionov, John Sanguinetti, Mike Shinkarovsky, Rafael
Shirakawa, Rodney Sinclair, Brian Small, Art Stamness, John Stroebel, Emerson

53

Verilator-3.805 26 SEE ALSO

Suguimoto, Renga Sundararajan, Stefan Thiede, Gary Thomas, Steve Tong, Hol-
ger Waechtler, Shawn Wang, Greg Waters, Eugene Weber, Leon Wildman, Gerald
Williams, Jeff Winston, Johan Wouters, and Ding Xiaoliang.

Thanks all.

24 DISTRIBUTION

The latest version is available from http://www.veripool.org/.

Copyright 2003-2010 byWilson Snyder. Verilator is free software; you can redistribute
it and/or modify the Verilator internals under the terms of either the GNU Lesser
General Public License Version 3 or the Perl Artistic License Version 2.0.

25 AUTHORS

When possible, please instead report bugs to http://www.veripool.org/.

Wilson Snyder <wsnyder@wsnyder.org>

Major concepts by Paul Wasson and Duane Galbi.

26 SEE ALSO

verilator_profcfunc, systemperl, vcoverage, make

And internals.txt in the distribution.

54

	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 ARGUMENT SUMMARY
	5 ARGUMENTS
	6 EXAMPLE C++ EXECUTION
	7 EXAMPLE SYSTEMC EXECUTION
	8 BENCHMARKING & OPTIMIZATION
	9 FILES
	10 ENVIRONMENT
	11 CONNECTING TO C++
	12 CONNECTING TO SYSTEMC
	13 DIRECT PROGRAMMING INTERFACE (DPI)
	14 CROSS COMPILATION
	15 CONFIGURATION FILES
	16 LANGUAGE STANDARD SUPPORT
	17 LANGUAGE EXTENSIONS
	18 LANGUAGE LIMITATIONS
	19 ERRORS AND WARNINGS
	20 FAQ/FREQUENTLY ASKED QUESTIONS
	21 BUGS
	22 HISTORY
	23 CONTRIBUTORS
	24 DISTRIBUTION
	25 AUTHORS
	26 SEE ALSO

