
Using the LALR Parser Generator

LPG Generator Overview
The LPG system consists of two components: a generator and a language specific
runtime. Here we discuss primarily the generator component.

The generator, lpg.exe, is a C++ program that takes as input a “grammar” file and
produces parsing “tables”, normally expressed as constants and arrays in an application
language (e.g. Java), that together with a parser (provided by the runtime) allow parsing
or scanning of an input string that conforms to the language specified by the grammar. A
rule may have “actions”, that is, statements in the application programming language that
are executed whenever it is “reduced”, that is, when its right-hand side is parsed. Rule
actions may be used to generate an intermediate representation of the input. Often this
representation mirrors closely the syntax and is called an Abstract Syntax Tree (AST).
The LPG generator can generate an AST automatically without user specified actions.

Input Grammar
The input to the LPG generator consists primarily of language syntax rules expressed in
BNF. There is usually more input than just the grammar rules. One must specify
“options” to indicate how LPG should process the grammar. The “actions” must also be
specified as well as code used with the actions. To facilitate this, the input file is divided
into “sections”, which we describe in detail below. Here is an example of a grammar file,
ExprParser.g (the extension “.g” is suggested, but any other, or none, may be used):

%options
ast_directory=./ExprAst,automatic_ast=toplevel,var=nt,visitor=default
%options programming_language=java
%options package=expr1
%options template=dtParserTemplateD.g
%options import_terminals=ExprLexer.g

$Terminals
 IntegerLiteral
 PLUS ::= +
 MULTIPLY ::= *
 LPAREN ::= (
 RPAREN ::=)
$end

$Rules
 E ::= E + T
 | T
 T ::= T * F
 | F
 F ::= IntegerLiteral
 F$ParenExpr ::= (E)
$End

The options are always first. The first option indicates automatic AST generation with
sub-options to indicate where to put the generated AST classes and interfaces, how to
treat terminal symbols and which kind of visitor to use. The second option specifies the
application programming language; it is Java which LPG will use for generating the
actions, the AST and the parsing tables. The next option, “package”, specifies the Java
package name for the generated code. The “template” option refers to a template file
that describes additional options and code needed to simplify the generation of the parser.
Finally, there is an “import_terminals” option that specifies the scanner (or lexer) that
breaks the input into the “tokens” or terminal symbols to be parsed. The various LPG
options (there are many) are described in another document.

Next there are two “sections”, each indicated by the “escape symbol” (“$”) followed by a
keyword. The first is “$Terminals” and this section consists simply of a list of the
terminal symbols. The other section is “$Rules” which specifies the syntax in BNF
rules. The non-terminal and terminal symbols in a rule may be named. The name
“$ParenExpr” in the above rule, “F$ParenExpr ::= (E)”, names the generated AST
rule class.

Generated Output
The LPG generator always produces a console output listing of the options used, error
diagnostics and various grammar and state machine properties. If the language option is
used, then parsing tables (in text or program format) are generated along with action
code. For the simple expression parser (for which the language is Java) the following
files are generated:

• ExprParser.java – the “action” file: a class with methods for invoking the
runtime parser and the syntactic actions

• ExprParsersym.java – the “sym” file: an interface defining the terminal symbol
representation

• ExprParserprs.java – the “prs” file: a class defining the state machine or parse
tables used by the runtime parser

Since the automatic AST generation option is used, the AST classes and interfaces are
also generated (typically within the action class, but not in this example).

Language Specific Runtime
LPG runtime support includes input and token stream management as well as stack based
parsers. The Java runtime has two stream classes, called LexStream and PrsStream.
The LexStream assumes the input to be parsed (or scanned) is a character array. There
are methods to iterate through the array and to keep track of locations (offsets, line and
column). The scanner (or “lexer” as we prefer to name it), whether it is LPG provided or
hand coded, reads characters, classifies them and produces an array list of “tokens”
(called a “token stream”) to be parsed.

An LPG lexer action class is typically an extension of LexStream that tokenizes the input
character array according to grammar rules using a special runtime parser, LexParser.
The generated token list is contained in a token stream class called PrsStream. An LPG

parser action class is normally an extension of PrsStream that parses the tokens
according to syntax rules using one of the provided runtime parsers, the
DeterministicParser or the BacktrackingParser. Lexers and parsers can detect and
report errors. An LPG parser will normally raise an exception and terminate when the
first error is encountered. However, the user may instruct the parser to invoke the
DiagnoseParser to parse the entire input to diagnose all syntax errors.

To simplify building lexers and parsers, the LPG Java runtime also contains “templates”
describing the user’s action class. A template is not a real class (or code) but a
parameterized class fragment. Parameterization is achieved by macro definitions (much
like the “define” macros in C). The simple expression example shown above uses a
template, dtParserTemplateD.g to define its action class and method of invoking
actions.

Finally, the LPG Java runtime contains some useful code sections (called “$Header”
sections) that may be included in a lexer grammar file.

The LPG runtime is very language specific. At this time only the Java runtime has all of
the features described here. For C/C++ there is only a deterministic parser and prs and
sym files. We hope to expand the C/C++ runtime in the future and bring it to the same
level as the Java runtime.

Putting the Pieces Together
Let’s use the simple expression grammar example to illustrate the process of building an
LPG lexer and parser.

The Main Program
First we show a driver program that will invoke the lexer and parser in succession and
“visit” the automatically generated AST.

package expr1;
import expr1.ExprAst.*;

public class Main
{
 public static void main(String[] args)
 {
 Option option;
 ExprLexer Expr_lexer;
 ExprParser Expr_parser;
 Ast ast;

 try
 {
 option = new Option(args);
 option.readInputChars();

 Expr_lexer = // Create the lexer

new ExprLexer(option.getInputChars(), option.getFileName());

 Expr_parser = // Create the parser
new ExprParser(Expr_lexer);

 // Lex the stream to produce the token stream

 Expr_lexer.lexer(Expr_parser);

 // Parse the token stream to produce an AST
 ast = Expr_parser.parser();

 if (ast != null)
 {
 Integer result = (Integer)ast.accept(new ExprResultVisitor());
 System.out.println("The value is : " + result.intValue());
 }
 return;
 }
 catch (Exception e)
 {
 System.err.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

There are several things to notice about this driver. First, the AST classes are in a
separate imported package because the parser uses the ast_directory option. Next, an
option class (not shown here) is used to read the input file so that the input character
array and file name can be passed to the lexer constructor. A lexer and parser are created
with the latter taking the former as an argument. The lexer is a subclass of LexStream
and the parser is a subclass of PrsStream. These two objects are actually linked together
when the “lexer” method is invoked. The result of lexing is the list of tokens which is
known to the parser. The call on the “parser” method does the actual parsing and
produces an AST object which is then “visited” to evaluate the expression. The visitor
approach to traversing the AST will not be fully discussed in this document.

The Lexer
Next we examine the lexer. This is the grammar file:

%Options la=2
%options package=expr1
%options template=LexerTemplateD.g
%options export_terminals=("ExprParsersym.java", "TK_")

$Export
 IntegerLiteral PLUS MULTIPLY LPAREN RPAREN
$End

$Headers
 /.
 final void makeToken(int kind)
 {
 int startOffset = getLeftSpan(), endOffset = getRightSpan();
 makeToken(startOffset, endOffset, kind);
 }

 public final int getKind(int i) // Classify character at ith location
 {

 char c = (i >= getStreamLength() ? '\uffff' : getCharValue(i));
 return (c < 33 ? Char_WSChar :
 c>= '0' && c <= '9' ? Char_Digit :
 c == '+' ? Char_Plus :
 c == '*' ? Char_Star :
 c == '(' ? Char_LeftParen :
 c == ')' ? Char_RightParen :
 c == '\uffff' ? Char_EOF :
 Char_Unused);
 }
 ./
$End

$Terminals
 WSChar Digit Unused EOF

 Plus ::= '+'
 Star ::= '*'
 LeftParen ::= '('
 RightParen ::= ')'
$End

$Start
 Token
$End

$Rules
 Token ::= IntegerLiteral
 /.$BeginAction
 makeToken($_IntegerLiteral);
 $EndAction
 ./
 Token ::= '+'
 /.$BeginAction
 makeToken($_PLUS);
 $EndAction
 ./
 Token ::= '*'
 /.$BeginAction
 makeToken($_MULTIPLY);
 $EndAction
 ./
 Token ::= '('
 /.$BeginAction
 makeToken($_LPAREN);
 $EndAction
 ./
 Token ::= ')'
 /.$BeginAction
 makeToken($_RPAREN);
 $EndAction
 ./
 Token ::= WS -- White Space is scanned and ignored

 IntegerLiteral -> Digit
 | IntegerLiteral Digit

 WS -> WSChar
 | WS WSChar

$End

The Options
Lexer generation is guided by the LexerTemplateD template. This template has additional
LPG options. These include:

%Options programming_language=java,margin=4
%options action=("*.java", "/.", "./")
%options ParseTable=lpg.lpgjavaruntime.ParseTable
%Options prefix=Char_

The “action” option indicates that the action class is named with the grammar file prefix
and uses “/.” and “./” as action code delimiters. The “ParseTable” option indicates
the location of the Java ParseTable interface (which specifies the methods the runtime
parsers use to access the parse constants and table arrays). This option must be specified
for every LPG lexer or parser. The “prefix” option specifies the prefix applied to
terminal symbol names to ensure there will be no conflicts with Java keywords. It is
required that terminal symbols be acceptable Java identifiers (since they just name integer
constants in the symbol file) so the prefix may be necessary. Finally, the
“export_terminals” option indicates the symbol file for the exported symbols and their
prefix. A parser that imports this lexer need not use the same symbol file, but it must use
the same prefix. It is recommended that the prefix “TK_” be used for exported symbols.

There are other important parts to the template that are discussed below.

The Export Section
The first section in this example lexer is an “export” section. The export section is
signaled by the “$Export” heading and ended by “$End” or another section header. We
recommend that all sections be terminated by a “$End”. We note here that sections may
appear in any order and a given section may appear more than once (multiple instances
being concatenated together). The export section lists the terminal symbols that are
exported to a parser. An export symbol file is created for these symbols (with the name
and prefix specified in the “export” option, if given, or with the lexer grammar file prefix
suffixed with “ext” and no token prefix, if there is no export option).

The Headers Section
The “headers” section provides additional action class methods that are not provided in
the template. For most LPG lexers the two methods shown here are needed and one of
them, the getKind method cannot easily be incorporated into a general purpose template.
There are “include” files in the LPG distribution that may obviate the need for a special
“headers” section in the lexer grammar file.

The first method in this section, makeToken, actually creates a token and adds it to the
array list of tokens. To do this it invokes the corresponding method in LexStream
passing it the starting and ending indexes of the token in the input character array and the
token kind. The LexStream method, makeToken, refers to method with the same name in
PrsStream and it is this method that constructs the token and adds it to the list. A Token
class is defined in the LPG Java runtime. A token instance has offsets and a “kind”. The

token kind is just an integer that is defined in the symbol file. The runtime parser uses
the token kind to determine its next move.

The other method, getKind, gets the character kind of the input character being lexed (as
in the parser it gets the token kind of the token being parsed). In a lexer the “tokens” are
the input characters. This method, then, classifies the input character as a lexer terminal
symbol. This example is simple so if-then-else style logic is used. In more complex
cases, one would use an array to map at least the basic ASCII characters to their kinds.

The Terminals Section
The next section is the “terminals” section, signaled by “$Terminals”. Note that the
names are legal Java identifiers, but some of them, Plus and Star, for example, are often
denoted by operator characters. Thus, in the rule defining the token Plus we use the
symbol ‘+’ which is an “alias” for the terminal symbol Plus. This association can be
specified using an “alias” section or by defining it in the “terminals” section as we have
done above.

The Start Section
The “Start” section specifies the root or starting non-terminal. Rules that are not
derivable from the start symbol are useless and have no effect.

In a lexer the start symbol stands for the class of tokens to be scanned. Usually tokens
are simple and largely independent of each other. This is certainly the case in our
example where the only recursive rules are for recognizing IntegerLiteral and white
space. Thus, we use a special runtime parser, LexParser, in most lexers. The
LexParser is simply a token recognition loop that resets to the start state as each token is
recognized – it behaves just like a hand written scanner. This means that the start symbol
describes the class of tokens, not a list of tokens. It is possible (and sometimes
necessary) to use an actual parser (such as the DeterministicParser) and recognize a
token list. Lexer construction will be discussed in a separate document on lexer
construction.

The Rules Section
This section provides the token recognition rules for expressions. The tokens are the
operators, parentheses, integer literals and white space. One should note how the actions
are specified. No action is specified for white space so it is simply ignored. For the other
tokens the action is to construct an exported token using the makeToken method
described above. Note that to pass the exported token kind argument a special predefined
macro, $_, is prefixed to the exported token name. The macro is replaced by the prefix
specified for the exported symbol file, TK_, in our case.

Note also the macros $BeginAction and $EndAction surrounding the action code.
These macros are defined in the lexer template and are specific to the implementation of
rule actions. This is discussed in detail below.

The Action Class
The “lexer” from the user’s point of view is the object performing the token recognition
actions. It is therefore necessary, but somewhat complicated, to define the action class.
To facilitate this LPG provides lexer templates. Our example uses LexerTemplateD.
The template has a “headers” section that defines most (but not all, as noted below) of the
action class and associated methods as follows:

$Headers
 /.
 public class $action_type

extends $super_stream_class
implements $exp_type, $sym_type, RuleAction$additional_interfaces

 {
 private static ParseTable prs = new $prs_type();
 private $prs_stream_class prsStream;
 private LexParser lexParser = new LexParser(this, prs, this);

 public $prs_stream_class getPrsStream() { return prsStream; }

 public int getToken(int i) { return lexParser.getToken(i); }

 public int getRhsFirstTokenIndex(int i)
 { return lexParser.getFirstToken(i); }

 public int getRhsLastTokenIndex(int i)
 { return lexParser.getLastToken(i); }

 public int getLeftSpan() { return lexParser.getFirstToken(); }

 public int getRightSpan() { return lexParser.getLastToken(); }

 public $action_type(String filename, int tab)

throws java.io.IOException
 { super(filename, tab); }

 public $action_type(char[] input_chars, String filename, int tab)
 { super(input_chars, filename, tab); }

 public $action_type(char[] input_chars, String filename)
 { this(input_chars, filename, 1); }

 public $action_type() {}

 public String[] orderedExportedSymbols()

 { return $exp_type.orderedTerminalSymbols; }

 public LexStream getLexStream() { return (LexStream) this; }

 public void lexer($prs_stream_class prsStream)
 { lexer(null, prsStream); }

 public void lexer(Monitor monitor, $prs_stream_class prsStream)
 {
 if (getInputChars() == null)
 throw new NullPointerException("LexStream not initialized");
 this.prsStream = prsStream;
 prsStream.makeToken(0, 0, 0); // first entry has a “bad” token
 lexParser.parseCharacters(monitor); // Lex the input characters
 int i = getStreamIndex();
 prsStream.makeToken(i, i, $eof_token); // last has end of file

 prsStream.setStreamLength(prsStream.getSize());

 return;
 }
 ./
$End

This headers section is difficult to read (much less to understand) because of the number
of macros it uses. Rather than delve into these macros let us see the Java class LPG has
generated:

public class ExprLexer extends LpgLexStream

 implements ExprParsersym, ExprLexersym, RuleAction
{
 private static ParseTable prs = new ExprLexerprs();
 private PrsStream prsStream;
 private LexParser lexParser = new LexParser(this, prs, this);

 public PrsStream getPrsStream() { return prsStream; }

 public int getToken(int i) { return lexParser.getToken(i); }

 public int getRhsFirstTokenIndex(int i)
 { return lexParser.getFirstToken(i); }

 public int getRhsLastTokenIndex(int i)
 { return lexParser.getLastToken(i); }

 public int getLeftSpan() { return lexParser.getFirstToken(); }
 public int getRightSpan() { return lexParser.getLastToken(); }

 public ExprLexer(String filename, int tab) throws java.io.IOException
 { super(filename, tab); }

 public ExprLexer(char[] input_chars, String filename, int tab)
 { super(input_chars, filename, tab); }

 public ExprLexer(char[] input_chars, String filename)
 { this(input_chars, filename, 1); }

 public ExprLexer() {}

 public String[] orderedExportedSymbols()
 { return ExprParsersym.orderedTerminalSymbols; }

 public LexStream getLexStream() { return (LexStream) this; }

 public void lexer(PrsStream prsStream)
 { lexer(null, prsStream); }

 public void lexer(Monitor monitor, PrsStream prsStream)
 { if (getInputChars() == null)
 throw new NullPointerException("LexStream was not initialized");

 this.prsStream = prsStream;
 prsStream.makeToken(0, 0, 0); // first entry has a “bad” token
 lexParser.parseCharacters(monitor); // Lex the input characters

 int i = getStreamIndex();
 prsStream.makeToken(i, i, TK_EOF_TOKEN); // last has end of file
 prsStream.setStreamLength(prsStream.getSize());

 return;
 }

As we mentioned before the lexer action class, ExprLexer, extends LexStream (actually
it extends LpgLexStream, which is an abstract subclass of LexStream that forces the
method getKind to be defined). The class also implements three interfaces,
ExprParsersym, ExprLexersym and RuleAction. The first two are the symbol
interfaces for the lexer terminal symbols and the exported terminal symbols. The last is
the rule action interface signifying that the action class implements ruleAction method
used by the runtime parser (LexParser in this case) to invoke the appropriate action code
whenever a rule is reduced (we describe this method below).

This class has three constructors with which you specify the input file, the character array
and the tab value. The input file name may be given as the empty string, signifying that
there isn’t one. This name appears in default error messages and the parsing application
can access it through the LexStream method getFileName. The tab value is used to
ensure token starting and ending columns are correctly located in messages. It is not
necessary to specify an input character array when creating a lexer object; one might
create the lexer once and use it many times giving each time a new or modified character
array using methods that are provided in LexStream.

The action class needs access to a parser and a parse stream. The parser needs access to
the parse tables the lexer will use. Thus, three private variables are declared:

 private static ParseTable prs = new ExprLexerprs();
 private PrsStream prsStream;
 private LexParser lexParser = new LexParser(this, prs, this);

The first is for the parse table class, ExprLexerprs, a class which implements the
ParseTable interface. In order to create the token stream, a PrsStream is declared; this
will be an argument to the lexer method. Finally, the runtime parser used is the
LexParser. Note that its constructor takes TokenStream, ParseTable and RuleAction
instances. The action class itself is the token stream (since it extends LexStream) as
well as the rule action (since it implements RuleAction).

The lexer method calls the LexParser to parse the input character array and build the
list of tokens. A PrsStream, which will hold the list of exported tokens, is the principal
argument and is typically an instance of the parser’s action class (since that class
normally extends PrsStream). There is also a Monitor argument which is usually
“null” unless one wants to limit the time allocated to lexing. Note: an unused (“zero”)
token starts the list and an end-of- file token ends the list. A place holder at the beginning
of the list is needed by the parser.

We see several methods that may be invoked by the actions themselves: methods to get
the LexStream and the PrsStream (in order to access their methods), and methods to get
the span of terminals and rule right-hand sides in the input character array. We remarked
above that the headers section in the lexer grammar file defined a makeToken method

that referenced the makeToken method of LexStream, which in turn referenced the one
in PrsStream. This method could have referenced the PrsStream method directly as
prsStream.makeToken(...). The getLeftSpan and getRightSpan methods are used to
find the left-most and right-most character locations spanned by a rule. In fact we see
these methods used in the makeToken method discussed above. The other location
methods are quite useful and are documented elsewhere.

The Rule Action Method
Finally, we must explain the connection between the runtime parser (the LexParser) and
the user written rule actions. The parser invokes the ruleAction method, defined by the
RuleAction interface and implemented by the action class, whenever a rule is reduced
(that is, whenever its right-hand side has been parsed) passing the LPG assigned rule
number as argument. LPG provides two rule action implementations in the templates:
one uses a select statement and the other defines a class for each rule containing a method
to be executed when the rule is reduced. The select implementation is simpler and for
Java the more efficient one (however, for C++ the other is more efficient) so it is
illustrated here. Simply by changing the template one can switch transparently from one
to the other.

In the lexer Java code we find ruleAction as the last method listed. We shall first
examine it and then relate it back to the template and the grammar file actions.

 public void ruleAction(int ruleNumber)
 {
 switch(ruleNumber) {
 // Rule 1: Token ::= IntegerLiteral
 case 1: {
 makeToken(TK_IntegerLiteral);
 break;
 }
 // Rule 2: Token ::= +
 case 2: {
 makeToken(TK_PLUS);
 break;
 }
 // Rule 3: Token ::= *
 case 3: {
 makeToken(TK_MULTIPLY);
 break;
 }
 // Rule 4: Token ::= (
 case 4: {
 makeToken(TK_LPAREN);
 break;
 }
 // Rule 5: Token ::=)
 case 5: {
 makeToken(TK_RPAREN);
 break;
 }

 default:
 break;
 }
 return;
 }

The code is self explanatory, but how did it get there? In the template there is a rules
section with a special macro $BeginActions. This is macro is defined in the “$Define”
section of the template as follows:

 $BeginActions
 /.
 public void ruleAction(int ruleNumber)
 {
 switch(ruleNumber)
 {./

Since the template’s rules section is the first rules section the ruleAction method is started
after the template’s headers code but before LPG emits any user defined actions. After
all actions have been emitted, LPG emits the template’s “$Trailers” section. This
section has the macro $EndActions which completes the ruleAction method. The trailers
section also completes the action class declaration with a closing brace. The
$EndActions method is defined as follows:

 $EndActions
 /.
 default:
 break;
 }
 return;
 }./

The rules and trailers sections in the template are as follows:

$Rules
 /.$BeginActions./
$End

$Trailers
 /.
 $EndActions
 }
 ./
$End

Finally the actions themselves use two macros: $BeginAction and $EndAction. These
are defined as follows:

 $DefaultAction
 /. $Header
 case $rule_number: { ./

 $BeginAction /.$DefaultAction./

 $EndAction
 /. break;
 }./

The $DefaultAction macro specifies a new case alternative.

The Parser
The parser, as noted above, is specified by the following grammar file:

%options ast_directory=./ExprAst,automatic_ast=toplevel,var=nt,visitor=default
%options programming_language=java
%options package=expr1
%options template=dtParserTemplateD.g
%options import_terminals=ExprLexer.g

$Terminals
 IntegerLiteral
 PLUS ::= +
 MULTIPLY ::= *
 LPAREN ::= (
 RPAREN ::=)
$end

$Rules
 E ::= E + T
 | T
 T ::= T * F
 | F
 F ::= IntegerLiteral
 F$ParenExpr ::= (E)
$End

The parser imports its terminal symbols from the lexer grammar file, In fact, when LPG
compiles this parser grammar file, it also compiles the imported lexer grammar file. It is
not necessary to import symbols from the lexer. Often the same lexer will be used by
several different parsers, so having only one instance of the lexer is advantageous. If
terminal symbols are not imported, then it is necessary to have a “terminals” section. In
our example the terminal symbol section is redundant and can be omitted. We do not
have a “start” section, so the first left-hand side symbol, E, is by default the start symbol.
The AST is automatically generated so have no need to write actions (but we will
examine the actions LPG generates).

The Parser Template
The template used here is the “deterministic” parsing template, dtParserTemplateD.
The LPG runtime has a traditional “deterministic” LALR parser, and a “backtracking”
parser. The deterministic parser supports any amount of look-ahead, the amount of
which is specified by the “look_ahead” option (the default is 1), while the backtracking
parser uses only one token look-ahead but can backtrack on errors and pursue alternative
parsing.

The Action Class
The deterministic parser template specifies the action class in much the same way as the
lexer template does. Here is the start of the action class declaration (the declaration order
has been changed to simplify our explanation) :

 public class $action_type extends PrsStream

 implements RuleAction$additional_interfaces
 {
 private static ParseTable prs = new $prs_type();
 private DeterministicParser dtParser;

 public String[] orderedTerminalSymbols()

 { return $sym_type.orderedTerminalSymbols; }

 public $action_type(LexStream lexStream)
 {
 super(lexStream);

 try
 {
 super.remapTerminalSymbols(

orderedTerminalSymbols(),$prs_type.EOFT_SYMBOL);
 }
 catch(NullExportedSymbolsException e) {
 }
 catch(NullTerminalSymbolsException e) {
 }
 catch(UnimplementedTerminalsException e)
 {
 java.util.ArrayList unimplemented_symbols = e.getSymbols();
 System.out.println

("The Lexer will not scan the following token(s):");
 for (int i = 0; i < unimplemented_symbols.size(); i++)
 {
 Integer id = (Integer) unimplemented_symbols.get(i);
 System.out.println

(" " + $sym_type.orderedTerminalSymbols[id.intValue()]);
 }
 System.out.println();
 }
 catch(UndefinedEofSymbolException e)
 {
 throw new Error(new UndefinedEofSymbolException
 ("The Lexer does not implement the Eof symbol " +

 $sym_type.orderedTerminalSymbols[$prs_type.EOFT_SYMBOL]));
 }
 }

Notice that the action class is named by the macro, $action_type, which is by default
the file prefix (ExprParser in our case). The action class extends PrsStream and
implements the RuleAction interface (just as we saw above with the lexer). There may
be additional interfaces implemented by methods the user defines so the template
provides a macro for specifying them.

A parse table instance (of the class defined in the “prs” file) is declared using the macro
$prs_type, so that the tables need only be loaded once even the parse method (shown

below) is called many times. A private variable references the runtime deterministic
parser.

There is one constructor for the class and it takes a LexStream, as its argument. As
noted above in our discussion of the main program, the LexStream will be the lexer
itself. The action class extends PrsStream whose constructor is called to link the
LexStream and PrsStream together. The constructor then checks the validity of the
terminal symbol file (given by the macro $sym_type) and remaps the terminal symbol
values assigned by the lexer to the values defined in the parser’s symbol file. In this way
the parser will always use the correct symbol value, even when the lexer is independently
constructed. It is possible that the parser has some terminal symbols that are not exported
by the lexer and thus will never become tokens. This is not an error. The parser
continues, though an exception is thrown and the symbols that cannot be scanned are
listed on the console.

The Parser Method
Next we consider the “parser” methods. There is essentially one method but four
different ways to invoke it:

 public $ast_class parser()
 { return parser(null, 0); }

 public $ast_class parser(Monitor monitor)
 { return parser(monitor, 0); }

 public $ast_class parser(int error_repair_count)
 { return parser(null, error_repair_count); }

 public $ast_class parser(Monitor monitor, int error_repair_count)
 {
 try
 { dtParser = new DeterministicParser

(monitor, (TokenStream)this, prs, (RuleAction)this);
 }
 catch (NotDeterministicParseTableException e)
 { throw new Error(new NotDeterministicParseTableException
 ("Regenerate $prs_type.java with -NOBACKTRACK option"));
 }
 catch (BadParseSymFileException e)
 { throw new Error(new BadParseSymFileException

("Bad Parser Symbol File" +
 " -- $sym_type.java. Regenerate $prs_type.java"));

 }

 try
 { return ($ast_class) dtParser.parse(); }
 catch (BadParseException e)
 { reset(e.error_token); // point to error token
 DiagnoseParser diagnoseParser = new DiagnoseParser(this, prs);
 diagnoseParser.diagnose(e.error_token);
 }

 return null;
 }

 public DeterministicParser getParser() { return dtParser; }

The parser takes as arguments a “monitor” and an “error_repair_count”. The monitor
gives you the ability to limit parser execution time. Monitor is actually an interface in
the LPG Java runtime with a single Boolean method isCancelled, which the user may
implement. It is not further discussed in this document. No monitor is specified by a
“null” argument. The error count argument is used with “error productions”. These
allow the parser to skip over specified syntactic constructs, for example “statement”, that
contain errors without terminating the parse. The error count indicates how many times
an erroneous construct may be skipped. At the present time the use of error productions
is only supported by the backtracking parser (though it may be added to the deterministic
parser in the future) and so this argument is simply ignored.

The body of the parser method creates a DeterministicParser giving it the monitor,
the TokenStream, which is “this” instance of the action class (a subclass of PrsStream),
the ParseTable, prs, and “this” as an instance of a class implementing the RuleAction
interface. The parser checks that the parse tables are tables for a deterministic (not
backtracking) parser and that the symbol file is valid. When LPG compiles a lexer that
exports tokens, an export symbol file is generated. LPG always generates a symbol file
for the parser’s terminal symbols. If these files are shared (that is, are the same file), then
if the lexer is compiled after the parser has been compiled (to fix a lexer bug, say), the
symbol file is no longer be valid and the BadParseSymFileException will be thrown.

Finally the deterministic parser’s parse method is called. Should a syntax error occur,
the BadParseException exception is thrown and the diagnosing parser is called to find
all syntax errors in the input token list. If there is an error, no syntactic actions are
executed and hence no AST can be generated. Essentially the parser stops on the first
error. If one prefers not to diagnose all errors, the template can be modified to take some
other action, such as printing out the error token and quitting.

Token Access and Location Methods
The template defines several methods for accessing and locating tokens. These methods
are used in the syntactic actions. Recall that the LPG Java runtime contains a Token
class and an IToken interface. A token has a “kind” (a number LPG assigns to identify
the token to the parser), start and end offsets (beginning and ending indexes of the token
in the input character array), the index of the token in the token array list and an
“adjunct” array index (while scanning tokens, comments or other text associated with a
token may be placed in a token like array – there is a method, makeAdjunct, in
PrsStream to construct the adjunct). There are methods in the Token class for obtaining
this location information.

These are the methods provided in the template:

 private void setResult(Object object) { dtParser.setSym1(object); }

 public Object getRhsSym(int i) { return dtParser.getSym(i); }

 public int getRhsTokenIndex(int i) { return dtParser.getToken(i); }
 public IToken getRhsIToken(int i)

 { return super.getIToken(getRhsTokenIndex(i)); }

 public int getRhsFirstTokenIndex(int i)

 { return dtParser.getFirstToken(i); }

 public IToken getRhsFirstIToken(int i)
 { return super.getIToken(getRhsFirstTokenIndex(i)); }

 public int getRhsLastTokenIndex(int i)

 { return dtParser.getLastToken(i); }

 public IToken getRhsLastIToken(int i)
 { return super.getIToken(getRhsLastTokenIndex(i)); }

 public int getLeftSpan() { return dtParser.getFirstToken(); }

 public IToken getLeftIToken(){ return super.getIToken(getLeftSpan()); }

 public int getRightSpan() { return dtParser.getLastToken(); }

 public IToken getRightIToken()

 { return super.getIToken(getRightSpan()); }

The first method, setResult is used to place the result of the rule action on the runtime
parser’s “symbol” stack to represent the value of the left-hand side symbol. This result is
then available when a rule with this symbol on its right-hand side is subsequently reduced
and can be accessed using the method getRhsSym.

For example, here is what is generated for some of the rules of our expression grammar:

 // Rule 3: T ::= T * F
 case 3: {
 setResult(
 new T(getLeftIToken(), getRightIToken(),
 (IT)getRhsSym(1),
 (IF)getRhsSym(3))
);
 break;
 }
 // Rule 5: F ::= IntegerLiteral
 case 5: {
 setResult(new F(getRhsIToken(1)));
 break;
 }
For rule 5 the result is a new instance of the class F. In rule 3, F is the third right-hand
side symbol and the action for this rule accesses its value with the call getRhsSym(3).
The action for rule 3 creates an instance of T as its result. The method calls,
getLeftIToken()and getRightIToken(), passed to the constructor in rule 3, retrieve
the starting input character array index of the leftmost token and the ending index of the
rightmost token spanned by the rule. These two operations are normally sufficient to
obtain location information. Sometimes the right-hand side is a token, as in rule 5. In
this case the generated AST passes to the rule class constructor the actual token itself
using the method getRhsIToken.

Miscellaneous Methods
There are a few additional useful methods defined in the action class. There are methods
to access the “error token” (which the user may choose to define), a method to get the
grammar specified token name (e.g., IntegerLiteral, in our example) and a method to
get the PrsStream Instance.

 public int getRhsErrorTokenIndex(int i)
 {
 int index = dtParser.getToken(i);
 IToken err = super.getIToken(index);
 return (err instanceof ErrorToken ? index : 0);
 }
 public ErrorToken getRhsErrorIToken(int i)
 {
 int index = dtParser.getToken(i);
 IToken err = super.getIToken(index);
 return (ErrorToken) (err instanceof ErrorToken ? err : null);
 }

 public String getTokenKindName(int kind)

 { return $sym_type.orderedTerminalSymbols[kind]; }

 public int getEOFTokenKind() { return $prs_type.EOFT_SYMBOL; }

 public PrsStream getParseStream() { return (PrsStream) this; }

The Generated AST
For our expression example we let LPG generate the AST. This AST consists of classes
representing the grammar rules and interfaces (or types) for the non-terminal symbols.
For most rule reductions LPG constructs an instance of the rule class passing it right-hand
side symbol values. A rule class extends one of three AST base classes and implements
an interface determined by the left-hand side of the rule.

Two of the AST base classes are relevant to our example: Ast and AstToken. Rules with
more than one symbol on the right-hand side generate a rule class that extends Ast.
Rules having a single terminal symbol as their right-hand side generate a rule class that
extends AstToken. Rules having a single non-terminal symbol as their right-hand side do
not generate a rule class (however, the interface defined for their right-hand side symbol
extends the interface defined for their left-hand side).

The Ast Class
Here is most of the Ast class (methods to get adjuncts and test for equality are omitted):

public abstract class Ast
{
 protected IToken leftIToken,
 rightIToken;
 public IToken getLeftIToken() { return leftIToken; }
 public IToken getRightIToken() { return rightIToken; }
 public String toString()
 {

 PrsStream prsStream = leftIToken.getPrsStream();
 return new String(

prsStream.getInputChars(),
 leftIToken.getStartOffset(),
 rightIToken.getEndOffset() - leftIToken.getStartOffset() + 1);
 }

 public Ast(IToken token)
 { this.leftIToken = this.rightIToken = token; }

 public Ast(IToken leftIToken, IToken rightIToken)
 { this.leftIToken = leftIToken;
 this.rightIToken = rightIToken;
 }
 void initialize() {}

 public abstract void accept(Visitor v);
 public abstract void accept(ArgumentVisitor v, Object o);
 public abstract Object accept(ResultVisitor v);
 public abstract Object accept(ResultArgumentVisitor v, Object o);
}

The attributes of the Ast class are left and right tokens. The constructor for a specific
rule class passes to the Ast class constructor the left and right tokens spanned by its rule.
The string of characters comprising this span can be obtained using the toString
method. There is an initialize method which can be overwritten for a specific rule
class by the user (we explain how this works in another document). Finally, there are
four abstract methods for accepting a “visitor” to process rule class instances. This will
be explained in more detail below where we discuss walking the AST.

The AstToken Class and Interface
The AstToken class is more like a rule class that focuses on tokens:

public class AstToken extends Ast implements IAstToken
{
 public AstToken(IToken token) { super(token); }

 public IToken getIToken() { return leftIToken; }

 public String toString() { return leftIToken.toString(); }

 public void accept(Visitor v) { v.visit(this); }
 public void accept(ArgumentVisitor v, Object o) { v.visit(this, o); }
 public Object accept(ResultVisitor v) { return v.visit(this); }
 public Object accept(ResultArgumentVisitor v, Object o)
 { return v.visit(this, o); }
}

Notice that this class extends Ast, as does a rule class, and implements IAstToken, just
as a rule class implements an interface for its left-hand side. Terminal symbols (or
tokens) have the same “type” or interface while non-terminal symbols generally have
different types. The method getIToken retrieves the token and the toString method
gives its textual content. As required by the IAstToken interface this class implements
accept methods for the four kinds of visitor. The IAstToken interface also requires

implementation of getters for left and right tokens (to be compatible with non-terminal
symbol interfaces) and is defined as follows:

public interface IAstToken
{
 public IToken getLeftIToken();
 public IToken getRightIToken();

 void accept(Visitor v);
 void accept(ArgumentVisitor v, Object o);
 Object accept(ResultVisitor v);
 Object accept(ResultArgumentVisitor v, Object o);
}

The Rule Classes and Interfaces
Now let us examine the classes and interfaces for the rules in our grammar. Consider
first the rules with left-hand side symbol F. The first rule produces an integer literal
while the second produces a parenthesized expression. The F interface, IF, is simply:

public interface IF extends IT, IAstToken {}

The first rule is the reason F extends IAstToken, while the rule, T ::= F, requires that F
extend IT. The class for the first rule, “F ::= IntegerLiteral”, is (essentially) as
follows:

public class F extends AstToken implements IF
{
 public F(IToken token) { super(token); initialize(); }

 public void accept(Visitor v) { v.visit(this); }
 public void accept(ArgumentVisitor v, Object o) { v.visit(this, o); }
 public Object accept(ResultVisitor v) { return v.visit(this); }
 public Object accept(ResultArgumentVisitor v, Object o)
 { return v.visit(this, o); }
}

For this rule LPG generates the action code, “setResult(new F(getRhsIToken(1)));”.
As noted above, this creates an instance of F which is in fact an AstToken.

The class for the second rule with left-hand side F, “F$ParenExpr ::= (E)”, is named
ParenExpr and is defined as follows:

public class ParenExpr extends Ast implements IF
{
 private IE _E;

 public IE getE() { return _E; }

 public ParenExpr(IToken leftIToken, IToken rightIToken, IE _E)
 { super(leftIToken, rightIToken);
 this._E = _E;
 initialize();
 }

 public void accept(Visitor v) { v.visit(this); }
 public void accept(ArgumentVisitor v, Object o) { v.visit(this, o); }
 public Object accept(ResultVisitor v) { return v.visit(this); }
 public Object accept(ResultArgumentVisitor v, Object o)
 { return v.visit(this, o); }
}

This class has a single attribute, “_E”, and a method to access it, “getE()”. Notice that
an instance of this attribute may be an E, a T or an F, which is why the IT and IF
interfaces extend IE.

LPG generates the following action code:

setResult(new ParenExpr(getLeftIToken(), getRightIToken(),(IE)getRhsSym(2)));

The left parenthesis is the left token and the right parentheses is the right token. For the
second right-hand side symbol, “E”, previous reductions have stacked an object of type
“IE” belonging to one of the classes E, T, F, or ParenExpr.

The only remaining rules of interest are “E ::= E + T” and “T ::= T * F”. The single
productions “E ::= T” and “T ::= F” do not generate rule classes or actions but serve
only to indicate subtypes of the expression type. Since these two rules are very much
alike we will only consider the rule “E ::= E + T”.

The IE interface is essentially the same as the IAstToken interface shown above -- only the
name is different. Interfaces provide strong typing for the rule class attributes.

The “E” rule class is as follows:

public class E extends Ast implements IE
{
 private IE _E;
 private IT _T;

 public IE getE() { return _E; }
 public IT getT() { return _T; }

 public E(IToken leftIToken, IToken rightIToken, IE _E, IT _T)
 { super(leftIToken, rightIToken);
 this._E = _E;
 this._T = _T;
 initialize();
 }

 public void accept(Visitor v) { v.visit(this); }
 public void accept(ArgumentVisitor v, Object o) { v.visit(this, o); }
 public Object accept(ResultVisitor v) { return v.visit(this); }
 public Object accept(ResultArgumentVisitor v, Object o)
 { return v.visit(this, o); }
}

This class has two attributes (for the expression and the term) and getters for them. The
constructor is essentially the same as the one for parenthesized expression shown above.
As with all rule classes there are methods to accept visitors.

The LPG generated action for this rule should not surprise us.

setResult(new E(getLeftIToken(), getRightIToken(),
 (IE)getRhsSym(1),
 (IT)getRhsSym(3))
);

Notice that the constructor is passed the token span of the rule and the expression and
term instances that are to be added together. The plus operator is ignored since we have
taken the option “var=nt”, which means that LPG should generate variables only for
non-terminal symbols. If we wanted the operator token as an attribute of our class, then
all we need to do is suffix the terminal symbol with a name (prefixed with a dollar sign).

The AST Visitor
The generated AST is a simplified syntax derivation tree. A tree node is an instance of a
rule class and its children are its attributes that are rule instances or token instances. For
example, given the input “3 + 4 * 2” we can visually display its AST as “E[F[3],
T[F[4], F[2]]]”. The “E” node has two children, an “F” and a “T” ; the “T” has two
“F” children and the “F” nodes always have an integer literal child. (Please forgive the
linear representation which encloses the children of a node in square brackets.) To
process this tree we need to traverse the nodes and operate on their attributes. LPG
supports the “visitor” paradigm for processing the AST. The classes and methods
making up the visitor are completely independent of the AST. The visitor accesses the
AST through node attribute methods and the AST communicates with the visitor through
its accept methods.

The Generated Visitor Interfaces
LPG generates four visitor interfaces: Visitor, ArgumentVisitor, ResultVisitor and
ResultArgumentVisitor. The simplest is the Visitor interface, which for our example
is as follows:

public interface Visitor
{
 void visit(AstToken n);
 void visit(E n);
 void visit(T n);
 void visit(F n);
 void visit(ParenExpr n);
}

The “visit” method is overloaded by an argument for each AST class that is used. Each
AST class has an “accept” method that invokes the corresponding visit method passing
it “this” instance as argument, as we have seen above:

public void accept(Visitor v) { v.visit(this); }

Thus, while visiting one node, say “m” , should we want to visit a child node, say “n”, we
simply tell the child to “accept” the visitor – “n.accept(v)”.

The ArgumentVisitor “visit” methods take an additional argument (an “Object”),
which can be used for inherited attributes, while those of the ResultVisitor produce a
result, which can be used for synthesized attributes. The ResultArgumentVisitor
methods both take an argument and return a result.

The Generated Visitor Classes
In addition to the visitor interfaces, LPG generates two abstract visitor classes: the
AbstractVisitor class that implements the Visitor and ArgumentVisitor interfaces
and the AbstractResultVisitor class that implements the ResultVisitor and
ResultArgumentVisitor interfaces.
Here is the AbstractVisitor class generated for our example:

public abstract class AbstractResultVisitor
 implements ResultVisitor, ResultArgumentVisitor
{
 public abstract Object unimplementedVisitor(String s);

 public Object visit(AstToken n)
 { return unimplementedVisitor("visit(AstToken)"); }

 public Object visit(AstToken n, Object o)
 { return unimplementedVisitor("visit(AstToken, Object)"); }

 public Object visit(E n) { return unimplementedVisitor("visit(E)"); }

 public Object visit(E n, Object o)
 { return unimplementedVisitor("visit(E, Object)"); }

 public Object visit(T n) { return unimplementedVisitor("visit(T)"); }

 public Object visit(T n, Object o)
 { return unimplementedVisitor("visit(T, Object)"); }

 public Object visit(F n) { return unimplementedVisitor("visit(F)"); }

 public Object visit(F n, Object o)
 { return unimplementedVisitor("visit(F, Object)"); }

 public Object visit(ParenExpr n)
 { return unimplementedVisitor("visit(ParenExpr)"); }

 public Object visit(ParenExpr n, Object o)
 { return unimplementedVisitor("visit(ParenExpr, Object)"); }
}

A visitor that extends this abstract class must implement the “unimplementedVisitor”
abstract method. One implementation might simply be to ignore an unimplemented visit
to a node. It might be better to provide a message or throw an exception when such a
visitor is invoked.

The Expression Visitor
For our expression example we have implemented a result visitor which we call
“ExprResultVisitor”. The purpose of the visitor is to “walk” the AST and evaluate the
terms and expressions it contains.

In the main program the AST node returned from the parser accepts our visitor which
evaluates the input expression.

Integer result = (Integer) ast.accept(new ExprResultVisitor());

The visitor class is as follows:

public class ExprResultVisitor extends AbstractResultVisitor
{
 public Object unimplementedVisitor(String s)
 {
 System.out.println(s);
 return null;
 }

 public Object visit(E expr)
 {
 Integer left = (Integer) expr.getE().accept(this),
 right = (Integer) expr.getT().accept(this);
 return new Integer(left.intValue() + right.intValue());
 }

 public Object visit(T expr)
 {
 Integer left = (Integer) expr.getT().accept(this),
 right = (Integer) expr.getF().accept(this);
 return new Integer(left.intValue() * right.intValue());
 }

 public Object visit(F expr)
 {
 return new Integer(expr.toString());
 }

 public Object visit(ParenExpr expr)
 {
 return (Integer) expr.getE().accept(this);
 }
}

To understand how this visitor works, let us follow its execution on the sample tree,
“E[F[3], T[F[4], F[2]]]”, shown above. The top node “E”, which is visited by the
accept call in the main program, has two children: an “F” node and a “T” node. The “E”
accept method calls the “visit(E expr)” method of our visitor. This method retrieves
the “IE” and the “IT” attributes, visits them in turn and adds the resulting values.

The “IE” attribute is actually an “F” instance so it is the “visit(F expr)” method that
evaluates the “IE” child. The visitor converts the token text of “F” to an Integer object.
Thus, an Integer(3) is returned.

The “IT” attribute is a “T” instance, so the “visit(T expr)” method is invoked to visit
it. This method is quite similar to the “visit(E expr)” method, but the attributes are of
type “IT” and “IF”, respectively, and the operation is multiplication. The “IT” attribute
is an “F” instance which will be visited (as we saw above) and produce the value
Integer(4). The “IF” attribute is also an “F” instance and when visited produces the
value Integer(2). These two values are multiplied together to obtain an Integer(8)
value. This is added to the Integer(3) value of the “F” instance to obtain the main
program result, Integer(11).

Conclusion
We have illustrated the use of LPG for syntactical and lexical analysis through a simple
expression grammar example. We have shown the workings of the LPG generator and
many features of its Java runtime. In particular, LPG options, grammar input, table
output, lexer support, parser support and action class support (including automatic AST
generation) have been described in sufficient (albeit incomplete) detail to enable you to
build real parsing tools.

