Using the LALR Parser Generator

LPG Generator Overview

The LPG system consists of two components: a generator and a language specific
runtime. Here we discuss primarily the generator component.

The generator, Ipg.exe, is a C++ program that takes as input a “grammar” file and
produces parsing “tables’, normally expressed as constants and arrays in an application
language (e.g. Java), that together with a parser (provided by the runtime) allow parsing
or scanning of an input string that conforms to the language specified by the grammar. A
rule may have “actions’, that is, statements in the application programming language that
are executed whenever it is “reduced”, that is, when its right-hand side is parsed. Rule
actions may be used to generate an intermediate representation of the input. Often this
representation mirrors closely the syntax and is called an Abstract Syntax Tree (AST).
The LPG generator can generate an AST automatically without user specified actions.

Input Grammar

The input to the LPG generator consists primarily of language syntax rules expressed in
BNF. Thereisusualy more input than just the grammar rules. One must specify
“options’ to indicate how LPG should process the grammar. The “actions’” must also be
specified as well as code used with the actions. To facilitate this, the input file is divided
into “sections’, which we describe in detail below. Here is an example of a grammar file,
Expr Par ser . g (the extension “. g” is suggested, but any other, or none, may be used):

%opti ons

ast _directory=./ExprAst, autonati c_ast =t opl evel , var=nt, vi si t or =def aul t
%opti ons programmi ng_| anguage=j ava

%opti ons package=exprl

%opti ons tenpl at e=dt Parser Tenpl at eD. g

%options inport_term nal s=ExprLexer.g

$Term nal s
IntegerLitera
PLUS :: =
MULTI PLY
LPAREN : :
RPAREN : :

$end

T+

*

~ 1l

$Rul es
E :: + T

T :: * F

= -m

F ::= IntegerLitera
F$ParenExpr ::= (E)
$End

The options are dways first. The first option indicates automatic AST generation with
sub-options to indicate where to put the generated AST classes and interfaces, how to
treat termina symbols and which kind of visitor to use. The second option specifies the
application programming language; it is Javawhich LPG will use for generating the
actions, the AST and the parsing tables. The next option, “package”, specifies the Java
package name for the generated code. The “t enpl at e” option refers to atemplate file
that describes additional options and code needed to simplify the generation of the parser.
Finally, thereis an “i nport _t ermi nal s” option that specifies the scanner (or lexer) that
breaks the input into the “tokens’ or terminal symbols to be parsed. The various LPG
options (there are many) are described in another documert.

Next there are two “sections’, each indicated by the “escape symbol” (“$”) followed by a
keyword. The first is“$Ter mi nal s” and this section consists smply of alist of the
terminal symbols. The other section is “$Rul es” which specifies the syntax in BNF
rules. The nontermina and termina symbolsin arule may be named. The name

“$Par enExpr " in the above rule, “F$Par enExpr ::= (E)", namesthe generated AST
rule class.

Generated Output

The LPG generator always produces a console output listing of the options used, error
diagnostics and various grammar and state machine properties. If the language option is
used, then parsing tables (in text or program format) are generated along with action
code. For the smple expression parser (for which the language is Java) the following
files are generated:
Expr Par ser . j ava —the “action” file: a class with methods for invoking the
runtime parser and the syntactic actions
Expr Parsersym j ava —the “sym” file: an interface defining the terminal symbol
representation
Expr Par ser prs. j ava —the “prs’ file: aclass defining the state machine or parse
tables used by the runtime parser
Since the automatic AST generation option is used, the AST classes and interfaces are
also generated (typically within the action class, but not in this example).

Language Specific Runtime

LPG runtime support includes input and token stream management as well as stack based
parsers. The Java runtime has two stream classes, called LexSt r eamand Pr sSt r eam
The Lex St r eamassumes the input to be parsed (or scanned) is a character array. There
are methods to iterate through the array and to keep track of locations (offsets, line and
column). The scanner (or “lexer” as we prefer to name it), whether it is LPG provided or
hand coded, reads characters, classifies them and produces an array list of “tokens”
(called a“tokenstream”) to be parsed.

An LPG lexer action classistypically an extension of LexSt r eamthat tokenizes the input
character array according to grammar rules using a special runtime parser, LexPar ser .
The generated token list is contained in a token stream class called Prsstream An LPG

parser action class is normally an extension of Pr sSt r eamthat parses the tokens
according to syntax rules using one of the provided runtime parsers, the

Det er mi ni sti cParser Or theBackt racki ngPar ser. Lexersand parsers can detect and
report errors. An LPG parser will normally raise an exception and terminate when the
first error is encountered. However, the user may instruct the parser to invoke the

Di agnosePar ser to parse the entire input to diagnose all syntax errors.

To smplify building lexers and parsers, the LPG Java runtime aso contains “templates’
describing the user’s action class. A template is not areal class (or code) but a
parameterized class fragment. Parameterization is achieved by macro definitions (much
like the “define” macrosin C). The simple expression example shown above uses a
template, dt Par ser Tenpl at eD. g to define its action class and method of invoking
actions.

Finaly, the LPG Java runtime contains some useful code sections (called “$Header ”
sections) that may be included in alexer grammar file.

The LPG runtime is very language specific. At thistime only the Java runtime has all of
the features described here. For C/C++ there isonly a deterministic parser and prs and
sym files. We hope to expand the C/C++ runtime in the future and bring it to the same
level as the Java runtime.

Putting the Pieces Together

Let’s use the simple expression grammar example to illustrate the process of building an
LPG lexer and parser.

The Main Program

First we show adriver program that will invoke the lexer and parser in succession and
“vigit” the automatically generated AST.

package expr1;
i mport exprl. ExprAst.*;

public class Min

public static void main(String[] args)
{
Option option;
Expr Lexer Expr _| exer;
Expr Par ser Expr_par ser;
Ast ast;

try

{
option = new Option(args);
opti on. readl nput Chars();

Expr _lexer = /] Create the |exer
new ExprLexer (option. getlnputChars(), option.getFileNane());

Expr_parser = // Create the parser
new Expr Par ser (Expr_| exer);

/1 Lex the streamto produce the token stream
Expr _| exer .| exer (Expr _parser);

/1 Parse the token streamto produce an AST
ast = Expr_parser.parser();

if (ast !'= null)

{
Integer result = (Integer)ast.accept(new ExprResultVisitor());
Systemout.println("The value is : " + result.intValue());

}

return;

}
catch (Exception e)

Systemerr.println(e. get Message());
e.printStackTrace();

}

There are several things to notice about this driver. First, the AST classesarein a
separate imported package because the parser uses the ast _di r ect ory option. Next, an
option class (not shown here) is used to read the input file so that the input cheracter
array and file name can be passed to the lexer constructor. A lexer and parser are created
with the latter taking the former as an argument. The lexer is a subclass of LexSt ream
and the parser isa subclass of Prsstream These two objects are actually linked together
when the “I exer ” method isinvoked. The result of lexing is the list of tokens which is
known to the parser. The call on the “par ser ” method does the actual parsing and
produces an AST object which is then “visited” to evaluate the expression. The visitor
approach to traversing the AST will not be fully discussed in this document.

The Lexer
Next we examine the lexer. Thisisthe grammar file:

% ptions | a=2

%opt i ons package=expr1l

%options tenpl at e=Lexer Tenpl ateD. g

%opti ons export_term nal s=("ExprParsersymjava", "TK ")

$Export
IntegerLiteral PLUS MIULTIPLY LPAREN RPAREN
$End

$Header s
/.
final void makeToken(int Kind)
{
int startOffset = getlLeftSpan(), endOfset = getRi ght Span();
makeToken(start Offset, endOffset, kind);

}

public final int getKind(int i) // dassify character at ith location

{

char ¢ = (i >= getStreanLength() ? '"\uffff' : getCharValue(i));

return (c < 33 ? Char _WSChar
c>="0" && c <='9" ? Char_Digit
c ="+ ? Char _Plus :
c == "* ? Char_Star
c =="(" ? Char _LeftParen :
c ==")" ? Char_RightParen :
c == "\uffff ? Char _ECF :
Char _Unused) ;
}
i
$End
$Terninal s
WSChar Digit Unused EOF
Pl us ="'+
Star ="'
Lef t Paren ="' (
Ri ght Par en ="')'
$End
$Start
Token
$End
$Rul es
Token ::= IntegerLiteral
/. $Begi nActi on
makeToken($_IntegerlLiteral);
$EndActi on
i
Token ::= "+
/. $Begi nActi on
nmakeToken($_PLUS);
$EndActi on
v
Token ::="*'
/. $Begi nActi on
makeToken($_MJLTI PLY) ;
$EndActi on
A
Token ::= " ('
/. $Begi nActi on
makeToken($_LPAREN) ;
$EndActi on
v
Token ::=")"'
/. $Begi nActi on
makeToken($_RPAREN) ;
$EndActi on
A
Token ::= W5 -- White Space is scanned and ignored
IntegerLiteral -> Digit
| I'ntegerLiteral Digit
W5 -> WBChar

$ENd

| WS WBChar

The Options

Lexer generation is guided by the Lexer Tenpl at eDtemplate. This template has additional
LPG options. These include:

% pt i ons programi ng_| anguage=j ava, nar gi n=4
%options action=("*.java", "/.", "./")

%opti ons ParseTabl e=l pg. | pgj avarunti ne. ParseTabl e
%ptions prefix=Char_

The “acti on” option indicates that the action class is named with the grammar file prefix
and uses“/. ” and “. / " as action code delimiters. The “Par seTabl e” option indicates
the location of the Java ParseTable interface (which specifies the methods the runtime
parsers use to access the parse constants and table arrays). This option must be specified
for every LPG lexer or parser. The “prefi x” option specifies the prefix applied to
terminal symbol names to ensure there will be no conflicts with Java keywords. It is
required that terminal symbols be acceptable Java identifiers (since they just name integer
constants in the symbol file) so the prefix may be necessary. Finadly, the

“export _t erm nal s” option indicates the symbol file for the exported symbols and their
prefix. A parser that imports this lexer need not use the same symbol file, but it must use
the same prefix. It isrecommended that the prefix “TK_" be used for exported symbols.

There are other important parts to the template that are discussed below.

The Export Section

The first section in this example lexer is an “export” section. The export section is
signaled by the “$Export ” heading and ended by “$End” or another section header. We
recommend that all sections be terminated by a“$End”. We note here that sections may
appear in any order and a given section may appear more than once (multiple instances
being concatenated together). The export section lists the terminal symbols that are
exported to a parser. An export symboal fileis created for these symbols (with the name
and prefix specified in the “export” option, if given, or with the lexer grammar file prefix
suffixed with “ext” and no token prefix, if there is no export option).

The Headers Section

The “headers’ section provides additional action class methods that are not provided in
the template. For most LPG lexers the two methods shown here are needed and one of
them, the get ki nd method cannot easily be incorporated into a genera purpose template.
There are “include” filesin the LPG distribution that may obviate the need for a special
“headers’ section in the lexer grammar file.

The first method in this section, makeToken, actually creates a token and adds it to the
array list of tokens. To do this it invokes the corresponding method in LexSt r eam
passing it the starting and ending indexes of the token in the input character array and the
token kind. The LexSt r eammethod, makeToken, refers to method with the same namein
PrsStreamand it is this method that constructs the token and adds it to the list. A Token
classis defined in the LPG Java runtime. A token instance has offsets and a“kind”. The

token kind is just an integer that is defined in the symbol file. The runtime parser uses
the token kind to determine its rext move.

The other method, get Ki nd, gets the character kind of the input character being lexed (as
in the parser it gets the token kind of the token being parsed). In alexer the “tokens’ are
the input characters. This method, then, classifies the input character as alexer terminal
symbol. This example is ssimple so if-then-else style logic is used. In more complex
cases, one would use an array to map at least the basic ASCII characters to their kinds.

The Terminals Section

The next section is the “terminals’ section, signaled by “$Ter nmi nal s”. Note that the
names are legal Java identifiers, but some of them, Pl us and st ar , for example, are often
denoted by operator characters. Thus, in the rule defining the token PI us we use the
symbol ‘+’ which isan “alias’ for the termina symbol Pl us. This association can be
specified using an “alias’ section or by defining it in the “terminals’ section as we have
done above.

The Start Section

The “Start” section specifies the root or starting non-terminal. Rulesthat are not
derivable from the start symbol are useless and have no effect.

In alexer the start symbol stands for the class of tokens to be scanned. Usually tokens
are simple and largely independent of each other. Thisis certainly the casein our
example where the only recursive rules are for recognizing | nt eger Li t eral and white
space. Thus, we use a special runtime parser, LexPar ser, in most lexers. The

LexPar ser issimply atoken recognition loop that resets to the start state as each token is
recognized — it behaves just like a hand written scanner. This means that the start symbol
describes the class of tokens, not alist of tokens. It is possible (and sometimes
necessary) to use an actual parser (such asthe Det er ni ni st i cPar ser) and recognize a
token list. Lexer constructionwill be discussed in a separate document on lexer
construction.

The Rules Section

This section provides the token recognition rules for expressions. The tokens are the
operators, parentheses, integer literals and white space. One should note how the actions
are specified. No action is specified for white space so it is ssimply ignored. For the other
tokens the action is to construct an exported token using the makeToken method
described above. Note that to pass the exported tokenkind argument a special predefined
macro, $_, is prefixed to the exported token name. The macro is replaced by the prefix
specified for the exported symboal file, TK_, in our case.

Note also the macros $Begi nAct i on and $EndAct i on surrounding the action code.
These macros are defined in the lexer template and are specific to the implementation of
ruleactions. Thisisdiscussed in detail below.

The Action Class

The “lexer” from the user’s point of view is the object performing the token recognition
actions. It istherefore necessary, but somewhat complicated, to define the action class.
To facilitate this LPG provides lexer templates. Our example uses Lexer Tenpl at eD.

The template has a “headers’ section that defines most (but not all, as noted below) of the
action class and associated methods as follows:

$Header s
/.
public class $action_type
ext ends $super_stream cl ass
i npl enents $exp_type, $symtype, Rul eAction$additional _interfaces

private static ParseTable prs = new $prs_type();
private $prs_streamclass prsStream
private LexParser |exParser = new LexParser(this, prs, this);

public $prs_streamclass getPrsStreanm() { return prsStream }
public int getToken(int i) { return |exParser.getToken(i); }

public int getRhsFirstTokenl ndex(int i)
{ return | exParser.getFirstToken(i); }

public int getRhsLast Tokenlndex(int i)
{ return | exParser.getLast Token(i); }

public int getLeftSpan() { return | exParser.getFirstToken(); }
public int getRi ghtSpan() { return | exParser. getlLastToken(); }

public $action_type(String filename, int tab)
throws java.io.| OException
{ super(filenane, tab); }

public $action_type(char[] input_chars, String filename, int tab)
{ super(input_chars, filenane, tab); }

public $action_type(char[] input_chars, String fil ename)
{ this(input_chars, filenane, 1); }

public $action_type() {}

public String[] orderedExportedSynbol s()
{ return $exp_type. orderedTerm nal Synbol s; }

public LexStream getlLexStrean() { return (LexStream) this; }

public void | exer($prs_streamclass prsStrean)
{ lexer(null, prsStrean); }

public void I exer(Mnitor nmonitor, $prs_streamclass prsStream
{
if (getlnputChars() == null)
t hrow new Nul | Poi nt er Exception("LexStreamnot initialized");
this.prsStream = prsStream
prsStream nakeToken(0, 0, 0); // first entry has a “bad” token
| exPar ser. parseCharacters(nmonitor); // Lex the input characters
int i = getStrean ndex();
prsStream nakeToken(i, i, $eof _token); // last has end of file

prsStream set St reanmLengt h(prsStream get Si ze());
return;
A
$End

This headers section is difficult to read (much less to understand) because of the number
of macrosit uses. Rather than delve into these macros let us see the Java class LPG has
generated:

public class ExprLexer extends LpgLexStream
i npl ements ExprParsersym ExprlLexersym Rul eAction
{

private static ParseTable prs = new ExprLexerprs();
private PrsStream prsStream
private LexParser |exParser = new LexParser(this, prs, this);

public PrsStream getPrsStrean() { return prsStream }
public int getToken(int i) { return |exParser.getToken(i); }

public int getRhsFirstTokenl ndex(int i)
{ return | exParser.getFirstToken(i); }

public int getRhsLast Tokenlndex(int i)
{ return | exParser.getlLast Token(i); }

public int getLeftSpan() { return |exParser.getFirstToken(); }
public int getRi ghtSpan() { return | exParser. getlLastToken(); }

public ExprLexer(String filenane, int tab) throws java.io.|OException
{ super(filenane, tab); }

publ i c ExprlLexer(char[] input_chars, String filenane, int tab)
{ super(input_chars, filenanme, tab); }

public ExprLexer(char[] input_chars, String fil enane)
{ this(input_chars, filenane, 1); }

public ExprLexer() {}

public String[] orderedExportedSynbol s()
{ return ExprParsersym orderedTerm nal Synbol s; }

public LexStream getlLexStrean() { return (LexStream this; }

public void | exer(PrsStream prsStream
{ lexer(null, prsStrean); }

public void | exer(Mnitor nmonitor, PrsStream prsStrean)
{ if (getlnputChars() == null)
throw new Nul | Poi nt er Exception("LexStreamwas not initialized");

this.prsStream = prsStream
prsStream nakeToken(0, 0, 0); // first entry has a “bad” token
| exParser. parseCharacters(monitor); // Lex the input characters

int i = getStrean ndex();
prsStream nakeToken(i, i, TK EOF TOKEN); // last has end of file
prsStream set Streamnlengt h(prsStream get Si ze());

return;

}

As we mentioned before the lexer action class, Expr Lexer, extendsLexSt r eam(actually
it extends LpgLexSt r eam Which is anabstract subclass of Lex St r eamthat forces the
method get Ki nd to be defined). The class also implements three interfaces,

Expr Parsersym ExprLexersym and Rul eAction. Thefirst two are the symbol
interfaces for the lexer termina symbols and the exported terminal symbols. Thelast is
the rule action interface signifying that the action class implements r ul eAct i on method
used by the runtime parser (LexPar ser in this case) to invoke the appropriate action code
whenever arule is reduced (we describe this method below).

This class has three constructors with which you specify the input file, the character array
and the tab value. The input file name may be given as the empty string, signifying that
thereisn’t one. This name appears in default error messages and the parsing application
can access it through the Lex St r eam method get Fi | eNane. The tab value is used to
ensure token starting and ending columns are correctly located in messages. It is not
necessary to specify an input character array when creating a lexer object; one might
create the lexer once and use it many times giving each time a new or modified character
array using methods that are provided in LexSt r eam

The action class needs access to a parser and a parse stream. The parser needs access to
the parse tables the lexer will use. Thus, three private variables are declared:

private static ParseTable prs = new ExprLexerprs();
private PrsStream prsStream
private LexParser |exParser = new LexParser(this, prs, this);

The first is for the parse table class, ExprLexerprs, aclass which implements the
ParseTable interface. In order to create the token stream aPr sSt r eamis declared; this
will be an argument to the | exer method. Finally, the runtime parser used is the
LexParser. Note that its constructor takes TokenSt r eam Par seTabl e and Rul eAct i on
instances. The action classitself isthe token stream (since it extends Lex St r eam) as
well as the rule action (since it implements Rul eAct i on).

Thel exer method calls the LexPar ser to parse the input character array and build the
list of tokens. A Prsstream which will hold the list of exported tokens, is the principal
argument and istypically an instance of the parser’s action class (since that class
normally extends Pr sSt r eam). Thereisaso aMonit or argument which is usually

“nul | " unless one wants to limit the time allocated to lexing. Note: an unused (*zero”)
token starts the list and an end-of-file token ends the list. A place holder at the beginning
of the list is needed by the parser.

We see severa methods that may be invoked by the actions themselves: methods to get
the LexSt r eamand the Pr s St r eam (in order to access their methods), and methods to get
the span of terminals and rule right-hand sides in the input character array. We remarked
above that the headers section in the lexer grammar file defined amakeToken method

that referenced the makeToken method of LexSt r eam which in turn referenced the one
inPrsstream This method could have referenced the Pr s St r eammethod directly as
prsStream makeToken(...). The getLeftSpan and getRightSpan methods are used to
find the left-most and right- most character locations spanned by arule. In fact we see
these methods used in the makeToken method discussed above. The other location
methods are quite useful and are documented el sewhere.

The Rule Action Method

Finaly, we must explain the connection between the runtime parser (the LexPar ser) and
the user written rule actions. The parser invokes the r ul eAct i on method, defined by the
Rul eAct i on interface and implemented by the action class, whenever aruleis reduced
(that is, whenever its right-hand side has been parsed) passing the LPG assigned rule
number as argument. LPG provides two rule action implementations in the templ ates:
one uses a select statement and the other defines a class for each rule containing a method
to be executed when the rule is reduced. The select implementation is ssimpler and for
Java the more efficient one (however, for C++ the other is more efficient) so it is
illustrated here. Simply by changing the template one can switch transparently from one
to the other.

In the lexer Java code we find ruleAction as the last method listed. We shall first
examine it and then relate it back to the template and the grammar file actions.

public void ruleAction(int rul eNunber)

{
swi tch(rul eNunmber) {

/1 Rule 1: Token ::= IntegerlLiteral
case 1: {
makeToken(TK I ntegerLiteral);
br eak;
}
/!l Rule 2: Token ::= +
case 2: {
makeToken(TK_PLUS) ;
br eak;
}
/1 Rule 3: Token ::=*
case 3: {
makeToken(TK_MJULTI PLY) ;
br eak;
}
/1 Rule 4: Token ::= (
case 4. {
makeToken(TK_LPAREN) ;
br eak;
}
/1 Rule 5: Token ::=)
case 5: {

makeToken(TK_RPAREN) ;
br eak;

defaul t:
br eak;

}

return,;

}

The code is self explanatory, but how did it get there? In the template there is arules
section with a special macro $Begi nAct i ons. Thisis mecro is defined in the “$Def i ne”
section of the template as follows:

$Begi nActi ons
/.
public void ruleAction(int rul eNunber)

{
swi tch(rul eNunber)

{./

Since the template' s rules section is the first rules sction the ruleAction method is started
after the template’ s headers code but before LPG emits any user defined actions. After

all actions have been emitted, LPG emits the template's “$Tr ai | er s” section. This
section has the macro $EndAct i ons which completes the ruleAction method. The trailers
section also completes the action class declaration with a closing brace. The

$EndAct i ons method is defined as follows:

$EndAct i ons
/.
defaul t:
br eak;

}

return,;

}./

The rules and trailers sections in the template are as follows:

$Rul es
/. $Begi nActi ons. /
$End

$Trailers
/.

}
/

$End.

$EndAct i ons

Finally the actions themselves use two macros. $Begi nAct i on and $EndActi on. These
are defined as follows:

$Def aul t Acti on
/. $Header
case $rul e_nunber: { ./

$Begi nAction /. $Defaul t Action./

$EndAct i on
/. br eak;

}./

The $Def aul t Acti on macr o specifies anew case alternative.

The Parser
The parser, as noted above, is specified by the following grammar file:

%options ast_directory=./ExprAst, autonati c_ast =t opl evel , var=nt, vi si t or =def aul t
%opti ons progranm ng_| anguage=j ava

%opt i ons package=expr1l

%opti ons tenpl at e=dt Par ser Tenpl at eD. g

%options inport_termn nal s=ExprLexer.g

$Termninal s
IntegerLitera

PLUS ::= +
MULTI PLY ::= *
LPAREN :: = (
RPAREN :: =)
$end
$Rul es
E:.:=E+ T
| T
T::=T*F
| F
F::=IntegerlLitera
F$ParenExpr ::= (E)
$ENnd

The parser imports its terminal symbols from the lexer grammar file, In fact, when LPG
compiles this parser grammar file, it aso compiles the imported lexer grammar file. Itis
not necessary to import symbols from the lexer. Often the same lexer will be used by
severa different parsers, so having only one instance of the lexer is advantageous. If
termina symbols are not imported, then it is necessary to have a “terminas’ section In
our example the terminal symbol section is redundant and can be omitted. We do not
have a“start” section, so the first |eft-hand side symboal, E, is by default the start symbol.
The AST is automatically generated so have no need to write actions (but we will
examine the actions LPG generates).

The Parser Template

The template used here is the “deterministic’ parsing template, dt Par ser Tenpl at eD.
The LPG runtime has a traditional “deterministic’ LALR parser, and a “ backtracking”
parser. The deterministic parser supports any amount of |ook-ahead, the amount of
which is specified by the “I ook_ahead” option (the default is 1), while the backtracking
parser uses only one token look-ahead but can backtrack on errors and pursue alternative

parsing.

The Action Class

The deterministic parser template specifies the action class in much the same way as the
lexer template does. Hereis the start of the action class declaration (the declaration order
has been changed to ssimplify our explanation):

public class $action_type extends PrsStream
i npl enents Rul eActi on$addi tional _i nterfaces
{

private static ParseTable prs = new $prs_type();
private DeterministicParser dtParser;

public String[] orderedTerm nal Synbol s()
{ return $sym type. orderedTerm nal Synbol s; }

publ i c $action_type(LexStream | exStream

{
super (I exStrean);
try
{
super . remapTer m nal Synbol s(
or der edTer mi nal Synbol s(), $prs_t ype. EOFT_SYMBQL) ;
}
cat ch(Nul | Export edSynbol sException e) {
cat ch(Nul | Ter m nal Synbol sException e) {
cat ch(Uni npl enent edTer ni nal sExcepti on e)
{
java. util.ArrayLi st uni npl ement ed_synbol s = e. get Synbol s();
Systemout. println
("The Lexer will not scan the follow ng token(s):");
for (int i = 0; i < uninplemented_synbols.size(); i++)
{
Integer id = (Integer) uninplenented_synbols.get(i);
Systemout.println
(" " + $sym type. orderedTerm nal Synbol s[id.intValue()]);
}
System out. printin();
}
cat ch(Undef i nedEof Synbol Excepti on e)
{
t hrow new Error(new Undefi nedEof Synbol Excepti on
("The Lexer does not inplenment the Eof symbol " +
$sym type. order edTer m nal Synbol s[$prs_t ype. EOFT_SYMBOL])) ;
}
}

Notice that the action class is named by the macro, $act i on_t ype, which is by default
the file prefix (Expr Par ser inour case). The action class extends Pr s St r eamand
implements the Rul eAct i on interface (just as we saw above with the lexer). There may
be additional interfaces implemented by methods the user defines so the template
provides a macro for specifying them.

A parse table instance (of the class defined in the “prs’ file) is declared using the macro
$prs_type, S0 that the tables need only be loaded once even the parse method (shown

below) is called many times. A private variable references the runtime deterministic
parser.

There is one constructor for the class and it takes aLexSt r eam asitsargument. As
noted above in our discussion of the main program, the Lex st r eamwill be the lexer
itself. The action class extends Pr s St r eamwhose constructor is called to link the

LexSt r eamand Pr sSt r eamtogether. The constructor then checks the validity of the
terminal symbol file (given by the macro $sym t ype) and remaps the terminal symbol
values assigned by the lexer to the values defined in the parser’s symbol file. In thisway
the parser will always use the correct symbol value, even whenthe lexer is independently
constructed. It is possible that the parser has some terminal symbols that are not exported
by the lexer and thus will never become tokens. Thisis not an error. The parser
continues, though an exception isthrown and the symbols that cannot be scanned are
listed on the console.

The Parser Method

Next we consider the “parser” methods. There is essentially one method but four
different ways to invoke it:

public $ast_cl ass parser()
{ return parser(null, 0); }

public $ast_cl ass parser(Mnitor nonitor)
{ return parser(nonitor, 0); }

public $ast_class parser(int error_repair_count)
{ return parser(null, error_repair_count); }

public $ast_class parser(Mnitor nmonitor, int error_repair_count)

{
try
{ dt Par ser = new DetermnisticParser
(rmonitor, (TokenStreamthis, prs, (RuleAction)this);
}

catch (Not DeterninisticParseTabl eException e)
{ t hrow new Error(new Not Det erm ni sti cParseTabl eExcepti on
("Regenerate $prs_type.java w th -NOBACKTRACK option"));

}
catch (BadParseSynti | eException e)
{ t hrow new Error (new BadPar seSynFi | eExcepti on
("Bad Parser Symbol File" +
" -- $symtype.java. Regenerate $prs_type.java"));

}

try
{ return ($ast_cl ass) dtParser.parse(); }

catch (BadParseException e)

{ reset (e.error_token); // point to error token
Di agnosePar ser di agnoseParser = new Di agnoseParser(this, prs);
di agnosePar ser . di agnose(e. error _t oken);

}

return null;

public DetermnisticParser getParser() { return dtParser; }

The parser takes as arguments a “monitor” and an “error_repair_count”. The monitor
gives you the ability to limit parser execution time. Moni t or isactualy an interface in
the LPG Java runtime with a single Boolean method i sCancel | ed, which the user may
implement. It isnot further discussed in this document. No monitor is specified by a
“nul 1 7 argument. The error count argument is used with “error productions’. These
allow the parser to skip over specified syntactic constructs, for example “statement”, that
contain errors without terminating the parse. The error count indicates how many times
an erroneous construct may be skipped. At the present time the use of error productions
isonly supported by the backtracking parser (though it may be added to the deterministic
parser in the future) and so this argument is simply ignored.

The body of the parser method creates a Det er ni ni sti cPar ser giving it the moni tor,
the TokenSt r eam which is“t hi s” instance of the action class (a subclass of PrsSt ream),
the Par seTabl e, prs, and “t hi s” as an instance of a classimplementing the Rul eAct i on
interface. The parser checks that the parse tables are tables for a deterministic (not
backtracking) parser and that the symbol file is valid. When LPG compiles a lexer that
exports tokens, an export symbol file is generated. LPG always generates a symbol file
for the parser’ s terminal symbols. If these files are shared (that is, are the samefile), then
if the lexer is compiled after the parser has been compiled (to fix alexer bug, say), the
symbol file is no longer be valid and the BadPar seSynFi | eExcept i on will be thrown.

Finally the deterministic parser’s par se method is called. Should a syntax error occur,
the BadPar seExcept i on exception is thrown and the diagnosing parser is called to find
all syntax errorsin the input token list. If thereisan error, no syntactic actions are
executed and hence no AST can be generated. Essentially the parser stops on the first
error. If one prefers not to diagnose all errors, the template can be modified to take some
other action, such as printing out the error token and quitting.

Token Accessand L ocation Methods

The template defines several methods for accessing and locating tokens. These methods
are used in the syntactic actions. Recall that the LPG Java runtime contains a Token
classand an | Token interface. A token hasa“kind” (a number LPG assigns to identify
the token to the parser), start and end offsets (beginning and ending indexes of the token
in the input character array), the index of the token in the token array list and an
“adjunct” array index (while scanning tokens, comments or other text associated with a
token may be placed in atoken like array — there is a method, makeAdj unct , in

Pr sSt r eamto construct the adjunct). There are methods in the Token class for obtaining
thislocation information

These are the methods provided in the template:

private void setResult(Object object) { dtParser.setSyml(object); }

public Object getRhsSyn(int i) { return dtParser.getSyn(i); }

public int getRhsTokenlndex(int i) { return dtParser.getToken(i); }
public | Token get Rhsl Token(int i)
{ return super.getl Token(get RhsTokenl ndex(i)); }

public int getRhsFirstTokenlndex(int i)
{ return dtParser.getFirstToken(i); }

public | Token get RhsFirstl Token(int i)
{ return super.getl Token(get RhsFirst Tokenl ndex(i)); }

public int getRhsLast Tokenlndex(int i)
{ return dtParser.getlLastToken(i); }

public | Token get RhsLast| Token(int i)
{ return super. getl Token(get RhsLast Tokenl ndex(i)); }

public int getLeftSpan() { return dtParser.getFirstToken(); }
public | Token getLeftl Token(){ return super.getl Token(getLeftSpan()); }
public int getRi ghtSpan() { return dtParser.getlLastToken(); }

public | Token get Ri ghtl Token()
{ return super. getl Token(get Ri ghtSpan()); }

The first method, set Resul t is used to place the result of the rule action on the runtime
parser’s “symbol” stack to represent the value of the left- hand side symbol. Thisresult is

then available when a rule with this symbol on its right-hand side is subsequently reduced
and can be accessed using the method get RhsSym

For example, here iswhat is generated for some of the rules of our expression grammar:

/'l Rule 3: T::=T*F
case 3: {
set Resul t (

new T(getLeftl Token(), getRi ghtlToken(),
(1 T)get RhsSyn(1),
(1 F) get RhsSym(3))
)i

br eak;

}

/!l Rule 5: F ::= IntegerlLiteral

case 5: {
set Resul t (new F(get Rhsl Token(1)));
br eak;

}

For rule 5 the result is a new instance of the class r. Inrule 3, F is the third right-hand
side symbol and the action for this rule accesses its value with the call get RnsSym(3) .
The action for rule 3 creates an instance of T asits result. The method calls,

get Left | Token() and get Ri ght | Token(), passed to the constructor in rule 3, retrieve
the starting input character array index of the leftmost token and the ending index of the
rightmost token spanned by the rule. These two operations are normally sufficient to
obtain location information. Sometimes the right-hand side isatoken, asin rule 5. In

this case the generated AST passes to the rule class constructor the actual token itself
using the method get RhsI Token.

Miscellaneous M ethods

There are afew additional useful methods defined in the action class. There are methods
to access the “error token” (which the user may choose to define), a method to get the
grammar specified token name (e.g., | nt eger Li t er al , in our example) and a method to
get the Pr s St r eam Instance.

public int getRhsErrorTokenl ndex(int i)
{
int index = dtParser.getToken(i);
| Token err = super. getl Token(i ndex);
return (err instanceof ErrorToken ? index : 0);

}
public ErrorToken get RhsErrorl Token(int i)

{

int index = dtParser.getToken(i);

| Token err = super. getl Token(i ndex);

return (ErrorToken) (err instanceof ErrorToken ? err : null);
}

public String get TokenKi ndNane(i nt ki nd)
{ return $sym type. orderedTer nm nal Synbol s[ki nd]; }

public int get EOFTokenKind() { return $prs_type. EOFT_SYMBCL; }

public PrsStream getParseStream() { return (PrsStream) this; }

The Generated AST

For our expression example we let LPG generate the AST. This AST consists of classes
representing the grammar rules and interfaces (or types) for the nonterminal symbols.
For most rule reductions LPG constructs an instance of the rule class passing it right-hand
side symbol values. A rule class extends one of three AST base classes and implements
an interface determined by the left-hand side of the rule.

Two of the AST base classes are relevant to our example: Ast and Ast Token. Ruleswith
more than one symbol on the right-hand side generate a rule class that extends Ast .

Rules having a single terminal symbol as their right-hand side generate a rule class that
extends Ast Token. Rules having a single non-terminal symbol as their right-hand side do
not generate a rule class (however, the interface defined for their right-hand side symbol
extends the interface defined for their left-hand side).

The Ast Class
Hereis most of the Ast class (methods to get adjuncts and test for equality are omitted):

public abstract class Ast
{
protected | Token | eftl Token,
ri ghtl Token;
public | Token getLeftl Token() { return leftlToken; }
public | Token getRi ghtl Token() { return rightlToken; }
public String toString()

{

PrsStream prsStream = | eft| Token. get PrsStreant();
return new String(
prsStream get | nput Chars(),
| eft1 Token.getStart O fset (),
rightl Token. get EndOffset() - leftl Token.getStartOffset() + 1);

}

public Ast (Il Token token)
{ this.leftlToken = this.rightlToken = token; }

public Ast (I Token |eftl Token, |Token rightlToken)
{ this.leftl Token = | eftl| Token;
this.rightl Token = rightl Token;

void initialize() {}

public abstract void accept(Visitor v);

public abstract void accept (ArgunentVisitor v, Cbject 0);

public abstract Object accept(ResultVisitor v);

public abstract Cbject accept(ResultArgunentVisitor v, bject 0);

}

The attributes of the Ast class are left and right tokens. The constructor for a specific
rule class passes to the Ast class constructor the left and right tokens spanned by itsrule.
The string of characters comprising this span can be obtained using thet oSt ri ng
method. Thereisan i ni ti al i ze method which can be overwritten for a specific rule
class by the user (we explain how this works in another document). Finally, there are
four abstract methods for accepting a “visitor” to process rule class instances. This will
be explained in more detail below where we discuss walking the AST.

The AstToken Class and I nterface
The Ast Token class is more like a rule class that focuses on tokens:

public class AstToken extends Ast inplenents |AstToken

{
publ i c Ast Token(| Token token) { super(token); }
public | Token getl Token() { return | eftlToken; }
public String toString() { return leftlToken.toString(); }
public void accept(Visitor v) { v.visit(this); }
public void accept (ArgunentVisitor v, Object o) { v.visit(this, 0); }
public Object accept(ResultVisitor v) { return v.visit(this); }
public Object accept(ResultArgunentVisitor v, Object 0)
{ return v.visit(this, o0); }
}

Notice that this class extends Ast , as does arule class, and implements | Ast Token, just
as arule class implements an interface for its left-hand side. Termina symbols (or
tokens) have the same “type” or interface while non-terminal symbols generally have
different types. The method get | Token retrieves the token and thet oSt ri ng method
givesits textua content. Asrequired by thel Ast Token interface this class implements
accept methods for the four kinds of visitor. Thel Ast Token interface also requires

implementation of getters for left and right tokens (to be compatible with nonterminal
symbol interfaces) and is defined as follows:

public interface |AstToken

{
public | Token getLeftl Token();

public | Token getRi ghtl Token();

void accept(Visitor v);

voi d accept (ArgunmentVisitor v, Object 0);

Ohj ect accept(ResultVisitor v);

bj ect accept (Resul t ArgunentVisitor v, Cbject 0);

The Rule Classes and I nterfaces

Now let us examine the classes and interfaces for the rules in our grammar. Consider
first the rules with left- hand side symbol F. The first rule produces an integer literal
while the second produces a parenthesized expression. The F interface, | F, issimply:

public interface IF extends IT, |AstToken {}

Thefirst rule is the reason F extends | Ast Token, whiletherule, T :: = F, requiresthat F
extend | T. Theclassfor thefirstrule, “F :: = IntegerLiteral 7, is(essentially) as
follows:

public class F extends AstToken inplenents |IF

{ public F(IToken token) { super(token); initialize(); }
public void accept(Visitor v) { v.visit(this); }
public void accept (ArgunentVisitor v, Object o) { v.visit(this, 0); }
public Object accept(ResultVisitor v) { return v.visit(this); }
public Onject accept(ResultArgunmentVisitor v, Object 0)
{ return v.visit(this, 0); }

}

For this rule LPG generates the action code, “set Resul t (new F(get Rhsl Token(1))); ".
As noted above, this creates an instance of F which isin fact an Ast Token.

The class for the second rule with left-hand side F, “F$Par enExpr ::= (E)", isnamed
Par enExpr and is defined as follows:

public class ParenExpr extends Ast inplenents IF

{
private IE _E;

public IE getE() { return _E }

publ i ¢ ParenExpr (1 Token | eftl Token, |Token rightl Token, |1E _E)
{ super (I eft1 Token, rightl Token);
this. E = _FE

initialize();

public void accept(Visitor v) { v.visit(this); }

public void accept (ArgunentVisitor v, Object o) { v.visit(this, 0); }
public Object accept(ResultVisitor v) { return v.visit(this); }
public Object accept(ResultArgunentVisitor v, Object 0)

{ return v.visit(this, o0); }

}

This class has a single attribute, “_E”, and a method to accessit, “get E() ”. Notice that
an instance of this attribute may be an E, aT or an F, whichiswhy thel Tand | F
interfaces extend | E.

LPG generates the following action code:
set Resul t (new Par enExpr (get Left | Token(), getRi ghtl Token(), (1E)getRhsSyn(2)));

The left parenthesis is the left token and the right parentheses is the right token For the
second right-hand side symbol, “E”, previous reductions have stacked an object of type
“I E” belonging to one of the classesE, T, F, or Par enExpr .

The only remaining rules of interestare “E :: = E + T"and“T ::= T * F”. Thesingle
productions “E ::= T” and “T ::= F” do not generate rule classes or actions but serve
only to indicate subtypes of the expression type. Since these two rules are very much
alike we will only consider therule“E ::= E + T".

Thel E interface is essentially the same as the 1AstToken interface shown above -- only the
name is different. Interfaces provide strong typing for the rule class attributes.

The “E” rule classis as follows:

public class E extends Ast inplenents |IE
{

private IE _E;

private I T _T,

public 1E getE() { return _E }
public IT getT() { return _T; }

public E(lI Token | eftl Token, |Token rightlToken, I1E _E, IT _T)
{ super (I eft1 Token, rightl Token);
this._ E = _FE

this. T = T
initialize();

}

public void accept(Visitor v) { v.visit(this); }

public void accept (ArgunentVisitor v, Object o) { v.visit(this, 0); }
public Object accept(ResultVisitor v) { return v.visit(this); }
public Object accept(ResultArgunentVisitor v, Object 0)

{ return v.visit(this, o); }

}

This class has two attributes (for the expression and the term) and getters for them. The
constructor is essentially the same as the one for parenthesized expression shown above.
Aswith al rule classes there are methods to accept visitors.

The LPG generated action for this rule should not surprise us.

set Resul t (new E(getLeftl| Token(), getRi ghtl Token(),

(1 E) get RhsSyn(1),
(1 T)get RisSym(3))

);

Notice that the constructor is passed the token span of the rule and the expression and
term instances that are to be added together. The plus operator is ignored since we have
taken the option “var =nt ”, which means that L PG should generate variables only for
non-terminal symbols. If we wanted the operator token as an attribute of our class, then
all we need to do is suffix the terminal symbol with a name (prefixed with a dollar sign).

The AST Visitor

The generated AST is a simplified syntax derivation tree. A tree node is an instance of a
rule class and its children are its attributes that are rule instances or token instances. For
example, given theinput “3 + 4 * 2” wecan visualy display its AST as “E[F[3],
T[F[4], F[2]]]". The“E” node hastwo children, an “F” and a“T” ; the “T” hastwo
“F” children and the “F” nodes always have an integer literal child. (Please forgive the
linear representation which encloses the children of a node in square brackets.) To
process this tree we need to traverse the nodes and operate on their attributes. LPG
supports the “visitor” paradigm for processing the AST. The classes and methods
making up the visitor are completely independent of the AST. The visitor accesses the
AST through node attribute methods and the AST communicates with the visitor through
its accept methods.

The Generated Visitor Interfaces

LPG generates four visitor interfaces. Vi si t or, Argunent Vi sit or, Resul t Vi si t or and
Resul t Argument Vi sitor. Thesimplestisthe Vi si t or interface, which for our example
is as follows:

public interface Visitor

{
voi d visit(Ast Token n);

void visit(E n);
void visit(T n);
void visit(F n);
void visit(ParenExpr n);

}

The "vi si t ” method is overloaded by an argument for each AST classthat isused. Each
AST class has an “accept ” method that invokes the corresponding visit method passing
it “t hi s” instance as argument, as we have seen above:

public void accept(Visitor v) { v.visit(this); }

Thus, while visiting one node, say “m” , should we want to visit a child node, say “n”, we
simply tell the child to “accept” the visitor — “n. accept (v) .

The Argurent Vi si tor “vi si t ” methods take an additional argument (an “Obj ect),
which can be used for inherited attributes, while those of the Resul t Vi si t or produce a
result, which can be used for synthesized attributes. The Resul t Ar gunent Vi si t or
methods both take an argument and return a result.

The Generated Visitor Classes

In addition to the visitor interfaces, LPG generates two abstract visitor classes: the

Abst ract Vi si t or classthat implementsthe Vi si t or and Ar gunent Vi si t or interfaces
and the Abst r act Resul t Vi si t or class that implementsthe Resul t Vi si t or and

Resul t Argunent Vi si t or interfaces.

Hereisthe Abst ract Vi si t or class generated for our example:

public abstract class AbstractResultVisitor
i mpl enents ResultVisitor, ResultArgunentVisitor

{
public abstract Cbject uninplenentedVisitor(String s);
public Object visit(AstToken n)
{ return uninpl enment edVi sitor("visit(AstToken)"); }
public Object visit(AstToken n, Cbject 0)
{ return uninplenmentedVisitor("visit(AstToken, Object)"); }
public Object visit(En) { return uninplenmentedVisitor("visit(E"); }
public Ohject visit(E n, Object 0)
{ return uninplenentedVisitor("visit(E, Ooject)"); }
public Object visit(T n) { return uninmplementedVisitor("visit(T)"); }
public Object visit(T n, Object 0)
{ return uninplenentedVisitor("visit(T, Ooject)"); }
public ohject visit(F n) { return uninplenmentedVisitor("visit(F)"); }
public Ohject visit(F n, Object 0)
{ return uninplenentedVisitor("visit(F, Ooject)"); }
public Onject visit(ParenExpr n)
{ return uninplenentedVisitor("visit(ParenExpr)"); }
public Ooject visit(ParenExpr n, Object o)
{ return uninplenentedVisitor("visit(ParenExpr, Object)"); }
}

A visitor that extends this abstract class must implement the “uni npl enent edVi si t or ”
abstract method. One implementation might smply be to ignore an unimplemented visit
to anode. It might be better to provide a message or throw an exception when such a
visitor is invoked.

The Expression Visitor

For our expression example we have implemented a result visitor which we call
“Expr Resul t Vi si tor”. The purpose of the visitor isto “wak” the AST and evaluate the
terms and expressions it contains.

In the main program the AST node returned from the parser accepts our visitor which
evaluates the input expression.

Integer result = (Integer) ast.accept(new ExprResultVisitor());
The visitor classis as follows:

public class ExprResultVisitor extends AbstractResultVisitor

public Object uninplenentedVisitor(String s)

{
Systemout.println(s);
return null;
}
public Object visit(E expr)
{
Integer left = (Integer) expr.getE().accept(this),
right = (Integer) expr.getT().accept(this);
return new Integer(left.intValue() + right.intValue());
}
public Object visit(T expr)
{
Integer left = (Integer) expr.getT().accept(this),
right = (Integer) expr.getF().accept(this);
return new Integer(left.intValue() * right.intValue());
}
public Object visit(F expr)
{
return new I nteger(expr.toString());
}

public Object visit(ParenExpr expr)
return (Integer) expr.getE().accept(this);
}

To understand how this visitor works, let us follow its execution on the sample tree,
“E[F[3], T[F[4], F[2]]1]",shown above. The top node “E”, which isvisited by the
accept call in the main program, has two children: an “F” node and a“T” node. The “E”
accept method calls the “vi si t (E expr) ” method of our visitor. This method retrieves
the “I E” and the "I T” attributes, visits them in turn and adds the resulting values.

The “l E” attributeis actually an “F” instance so it isthe “vi si t (F expr) ” method that
evaluates the “I E” child. The visitor converts the token text of “F” to an I nt eger object.
Thus, an | nt eger (3) is returred.

The“I T” attributeisa“T” instance, so the “vi si t (T expr)” method is invoked to visit
it. This method is quite smilar to the “vi si t (E expr) ” method, but the attributes are of
type “I T” and “I F”, respectively, and the operation is multiplication. The “I T” attribute
isan “F” instance which will be visited (as we saw above) and produce the value

I nteger (4). The"l F” attributeis aso an “F” instance and when visited produces the
valuel nt eger (2) . These two values are multiplied together to obtain an | nt eger (8)
value. Thisisadded to thel nt eger (3) value of the “F” instance to obtain the main
programresul t, | nt eger (11).

Conclusion

We have illustrated the use of LPG for syntactical and lexical analysis through a simple
expression grammar example. We have shown the workings of the LPG generator and
many features of its Javaruntime. In particular, LPG options, grammar input, table
output, lexer support, parser support and action class support (including automatic AST
generation) have been described in sufficient (albeit incomplete) detail to enable you to
build real parsing tools.

